
University of British Columbia – Technical Report

Point-Curve-Surface Complex: A Cell Decomposition for

Non-Manifold Two-Dimensional Topological Spaces

Boris Dalstein1, Rémi Ronfard2 and Michiel van de Panne1

1University of British Columbia, Canada
2Laboratoire Jean Kuntzmann, University of Grenoble & Inria, France

July 25, 2014

Abstract

We introduce the point-curve-surface complex (PCS complex), a cell complex tailored for a canonical
decomposition of “regular” non-manifold two-dimensional topological spaces (i.e., the class of topological
spaces that admits a simplicial 2-complex decomposition). PCS complexes are obtained by gluing together
points, curves and surfaces, very similarly to CW complexes, except that the cells are not restricted to be
topological disks. Also, gluing constraints that cells must satisfy to form a valid complex are much stricter
than with CW complexes. We conjecture that this specific combination of flexibility and constraints ensures
uniqueness of a minimal decomposition, obtained via atomic simplifications performed in any order.

The PCS complex admits a combinatorial description, called the abstract PCS complex. It is made of
vertices, closed edges, open edges defined by a start and an end vertex, and faces defined by an orientability,
a genus, and a boundary defined as a sequence of cycles, where a cycle is either a vertex, an oriented closed
edge possibly repeated, or a looping sequence of consecutive oriented open edges. It provides a compact
language to describe non-manifold two-dimensional topological spaces up to homeomorphism. We detail the
create/delete, glue/unglue and cut/uncut topological operators on this combinatorial structure.

A vector graphics complex (VGC) is an abstract PCS complex without the information of orientability and
genus, since it is irrelevant for vector graphics. Therefore, these two concepts are fundamentally equivalent,
and topological operators on abstract PCS complexes can also be applied to VGCs. As such, this report
provides insight and theoretical relevance to most of the design decisions behind the VGC, as well as a
thorough description of the topological operators on the VGC, described in terms of abstract PCS complexes.

1

1 Introduction

Let us start by a few words on the nature of this technical report. It is an early dissemination of research in
progress, to provide a more in-depth and theoretical perspective on the concepts presented in the article “Vector
Graphics Complexes” (VGC) [Dalstein et al., 2014]. It is only provided in the hope that it is useful, but we do
not consider it a complete research work publishable as is. A quite significant amount of time has been spent
to make it as complete, rigorous and correct as possible, but in order to dissemate this work in time alongside
[Dalstein et al., 2014], there are still a few missing arguments, proofs and discussions here and there. Also, since
it has not yet been thoroughly reviewed, it may contain a few mistakes. If you find any, we do apologize and
would be grateful if you could report them so we could fix them in later work. When we use the wording “it
can be shown that [...]”, this means that we have a formal proof on paper that we did not have time to typeset
in the report, or at the very least that we have very convincing arguments and a sketch of the proof, such that
we would be highly surprised if it turns out to be a wrong statement. In all other cases that resort more to
intuition than an actual proof, we use the wording “we believe that [...]”.

We present in this report the notion of PCS complex. It is a novel decomposition of two-dimensional topological
spaces into a new kind of cells, using a formalism deeply rooted in algebraic topology. After reading a few
paragraphs introducing the concept, one may rightfully ask: “Wait, how is this complicated algebraic topology
related to the VGC?”. Here is the background story: the VGC is defined as a combinatorial structure, on top
of which 2D geometry is added to render it. Then, topological operators are defined to alter this combinatorial
structure, such as glue/unglue and cut/uncut. The key question is: how to define these topological operators?
Essentially, a topological operator acting on the VGC is a function that takes as input a valid VGC, and
outputs a valid VGC. Hopefully, the output is something that corresponds to what we “expect” from the
operator. However, what we “expect” does not formally define the requirements of the operator. In other
words, since the structure is purely combinatorial, what the structure represents is a matter of interpretation,
and then the definition of the operator is actually the algorithm itself, and one has to take design decisions
as to what the output should be depending on the input. This departs fundamentally from a variety of other
topological data-structures (including planar maps and the selective geometric complex), that have a “pointset”
formalism that comes first. Hence, the topological operators can be defined in terms of pointsets, and the
actual algorithm has the requirement to correspond to the pointset definition. With a combinatorial structure,
things are fundamentally different. The only formal requirement of any operator is to output a valid VGC, to
which we add the informal requirement to “make sense”. When designing the algorithm for the cut topological
operator, we came across a few cases where several valid VGCs all seemed to be reasonable candidates that
could “make sense” as output of the algorithm. However, a choice had to be made and hence the question
“which of these outputs makes more sense?” was often raised. The PCS complex is a side product of trying to
answer this question. It is the structure toward which we converged after several attempts to define a “geometric
realization” for the VGC, i.e. an interpretation of the VGC as a non self-intersecting pointset. The insight
provided by this research has helped refine the VGC definition and algorithms to what they are now.

The report is organized as follows. In Section 2, we recall the notions of algebraic topology that are required
for the understanding of the report, and we give pointers to relevant textbooks for the interested reader. In
Section 3, we informally motivate the usefulness of PCS complexes, independently to their link with the VGC.
In Section 4, we formally define the notion of PCS complex, an “actual” topological structure, i.e. defining
a topology in a pointset sense. In Section 5, we independently define the notion of abstract PCS complex, a
combinatorial structure which generalizes the VGC by adding information about orientability and genus of faces.
This additional information is irrelevant for 2D vector graphics rendered using winding numbers, but is necessary
to make the connection between the combinatorial structure (abstract PCS complex) and the actual pointset
topology (PCS complex). More specifically, for each abstract PCS complex, we define a PCS complex called
its geometric realization, and conversely we see that every PCS complex is homeomorphic to the geometric
realization of some abstract PCS complex. In Section 6, we introduce a few basic algebraic operations on
halfedges, paths and cycles, a preliminary for Section 7, in which we present in depth the topological operators
create/delete, glue/unglue, and cut/uncut acting on abstract PCS complexes, with both theoretical discussion
and pseudocode. At last, in Section 8, we bridge the gap between abstract PCS complexes and VGCs, by
explaining how exactly they relate to each other, and why this PCS digression was useful to better understand
and define the VGC and its topological operators. We conclude the report with Section 9, in which we introduce
the notion of simplification and equivalence of PCS complexes, related to the cut/uncut operators. It lays the
ground for future work, by formalizing the conjecture of uniqueness of a minimal PCS decomposition.

2

Locally
homeo-
morphic

to

Figure 1: The sphere S2 = {x ∈ R3, ||x|| = 1} is a
2-manifold without boundary, since it is everywhere
locally homeomorphic to R2.

At p, locally
homeomorphic top

Figure 2: The surface [−1, 1]× [−1, 1] is a 2-manifold
with boundary, since it is locally homeomorphic either
to R2 or to R× [0,+∞).

2 Prerequisites of algebraic topology

This report makes use of many concepts from algebraic topology, such as topological spaces, homeomorphisms,
manifolds with boundary, compact manifolds, homeomorphisms, the classification theorems for curves and
surfaces, polygonal presentations, simplicial complexes, CW complexes, quotient spaces, as well as the differences
between immersions and embeddings. In this section, we recall semi-informally all these concepts so that the
unfamiliar reader can still follow the report. A formal but well illustrated introduction to these concepts can
be found in [Lee, 2011].

2.1 Topological spaces and homeomorphisms

In this report, whenever we say topological space, we mean a Hausdorff topological space. We do not recall
here the formal definition since it is not essential for the understanding of this report, but the interested reader
can find it in [Lee, 2011, Chapter 2], or more simply by looking it up on Wikipedia. Intuitively, a Hausdorff
topological space is a set — for instance X = {x ∈ R | 0 < x < 5} — together with a definition of “open
subsets” satisfying reasonable properties. For instance, I = (1, 2) = {x ∈ R | 1 < x < 2} is an open subset of
X, while J = [1, 2) = {x ∈ R | 1 ≤ x < 2} is not an open subset of X. In practice, most sets that you would
think of are indeed Hausdorff topological spaces. For instance, Rn is a Hausdorff topological space, and any
subset of Rn is a Hausdorff topological space as well.

Two topological spaces X and Y are said to be homeomorphic, denoted X ∼= Y , if and only if there exists an
homeomorphism between X and Y , i.e. an invertible continuous function φ : X → Y whose inverse φ−1 is
also continuous. X ∼= Y captures the intuitive concept of “X and Y are essentially the same topological space”,
meaning that even though they are not necessarily “equal”, they behave similarly and have a similar “shape”.
For instance, the two closed intervals I1 = [0, 1] and I2 = [1, 2] are not equal but they are homeomorphic. The
two open intervals J1 = (0, 1) and J2 = (1, 2) are not equal but they are homeomorphic. Also, the two circles
S1 = {(x, y) ∈ R2 | x2 +y2 = 1} and S1 = {(x, y) ∈ R2 | x2 +y2 = 2} are not equal but they are homeomorphic.
However, none of I1, J1 or S1 are homeomorphic to each other, which is the formal way of saying: “they do
not look alike”. This informal statement is so intuitive that we have different names for these objects (closed
intervals, open intervals, circles), while there is no terminology to differentiate, say, I1 and I2. Identifying that
a topological space X is homeomorphic to a known topological space Y is of primary importance because it
makes possible to infer properties of X from the known properties of Y .

2.2 Manifolds with boundary and compact manifolds

An n-manifold without boundary M is a topological space that is everywhere locally homeomorphic to
Rn. More formally: if X is a topological space and p ∈ X, then an open subset of X containing p is called a
neighbourhood of p and denoted Np. M is an n-manifold without boundary if and only if for each p ∈ M,
there exists a neighbourhood Np homeomorphic to Rn. For instance, the sphere S2 is a 2-manifold without
boundary because for each point p on the sphere, it “looks locally like” the plane, as illustrated in Figure 1.
However, the square [−1, 1] × [−1, 1] ⊂ R2 is not a 2-manifold without boundary because at p = (1, 0), it is
locally homeomorphic to R× [0,+∞), as illustrated in Figure 2. Since we want this last example to be included
in our definition of manifold, we use a more general definition: an n-manifold with boundary is defined as
a topological space that is everywhere locally homeomorphic either to Rn or to Hn = Rn−1 × [0,+∞). In this

3

V = R0 =

E| = D1 =

E◦ = S1 =

k
F�,0,k = S2#D2#

k· · ·#D2 =

F�,g,k = T2#
g
· · ·#T2#D2#

k· · ·#D2 =

F6�,g,k = P2#
g
· · ·#P2#D2#

k· · ·#D2 =

k

g

g ∼=k

g

k k

g
∼=

Figure 3: The classification of points, curves and surfaces. Any connected compact n-manifold with n ≤ 2 is
homeomorphic to one and only one of these known compact manifolds. The notations V, E|, E◦, F�,g,k, and
F6�,g,k are non-standard and introduced for conciseness and clarity. They are the characteristic manifolds for,
respectively: vertices, open edges, closed edges, orientable faces, and non-orientable faces.

report, whenever we say manifold, we mean manifold with boundary, unless without boundary is explicitly
stated. If M is an n-manifold, then the interior of M, denoted int(M), are the points of M that have a
neighbourhood homeomorphic to Rn. Conversely, the boundary of M, denoted ∂M, are the points of M that
have a neighbourhood homeomorphic to Hn, i.e. ∂M = M \ int(M).

A compact manifold M is a manifold that is compact as a topological space. A formal definition can be found
in [Lee, 2011, Chapter 4] but is not necessary for the understanding of this report. If M is a subset of Rn, then
M is compact if and only if it is bounded and topologically closed in Rn (i.e., Rn \M is open). For instance,
the closed interval [0, 1] is a compact manifold, but the real line R is not a compact manifold because it is not
bounded, and the open interval (0, 1) is not a compact manifold because it is not closed in R. If M is a compact
n-manifold, then ∂M is a compact (n− 1)-manifold but int(M) is an n-manifold generally not compact. More
specifically, int(M) is compact iff ∂M = ∅ (i.e., iff M is a compact n-manifold without boundary).

2.3 Classification of compact n-manifolds for n ≤ 2

Compact manifolds of dimension two and lower, i.e. points, curves, and surfaces, have been completely “clas-
sified”. This means that we know a very concise list of compact manifolds, illustrated in Figure 3, such as
any point, curve or surface is necessarily homeomorphic to one and only one of the manifolds in the list. In
other words, any surface “looks like” one and only one of the surfaces in the list. In this section, we recall this
classification. Following common practice, we only consider here connected compact manifolds, but it is trivial
to generalize to all compact manifolds since any compact n-manifold can be decomposed as a finite disjoint
union of connected compact n-manifolds.

Dimension 0 A connected compact 0-manifold is homeomorphic to the simple point R0 = {0}.

Dimension 1 A connected compact 1-manifold is homeomorphic either to the unit circle S1 or to the closed
interval D1 = [−1, 1]. A proof can be found in [Gale, 1987] or in [Lee, 2011, Ch. 5, p. 143-147].

Dimension 2 A connected compact 2-manifold without boundary is homeomorphic to either:

• The sphere S2, called the surface of genus 0.

• The connected sum of g ≥ 1 tori (T2)g = T2# g. . .#T2, called the orientable surface of genus g.

• The connected sum of g ≥ 1 projective planes (P2)g = P2# g. . .#P2, called the nonorientable surface
of genus g.

We clarify here the terminology. The torus T2 is the topological space obtained by “gluing” together (or
“sewing”) the opposite boundaries of a cylinder as depicted in Figure 4. Note that orientation matters: if you
choose to glue using the reverse orientation of one of the boundaries, as depicted in Figure 5, you get the Klein

4

b b

a

a

Figure 4: A polygonal presentation of the torus is the
single word W = aba−1b−1.

b b

a

a

Figure 5: A polygonal presentation of the Klein bottle
is the single word W = abab−1.

a b

a

b

Figure 6: A polygonal presentation of the sphere is
the single word W = abb−1a−1.

b b

a

a

Figure 7: A polygonal presentation of the projective
plane is the single word W = abab.

bottle K2 instead, which is not homeomorphic to the torus but to P2#P2. The projective plane P2 is the
topological space obtained by “gluing” the unique boundary of a disk to the unique boundary of a Möbius strip.
Alternatively, as illustrated in Figure 7, it can be obtained by gluing together one half of the boundary of a disk
to the other half, using the appropriate orientation. The connected sum of two surfaces consists in removing
one disk from each surface, and gluing together the two obtained boundaries.

The classification of surfaces given above has been first proven in [Dehn and Heegaard, 1907], and is nicely
covered and illustrated in [Lee, 2011, Ch. 6]. We recall below the high-level steps of this proof, which involves
the concept of polygonal presentations, related to the concept of abstract PCS complex introduced in this report.

• A word W is defined, given a set S, as a finite sequence of k ≥ 1 symbols, each of the form a or a−1

with a ∈ S. It represents a regular polygon with k edges, where some edges are identified in pairs with
a chosen orientation. For instance, the word W = abab−1 represents a square, where the first and third
edges are identified with the same orientation, and the second and fourth edges are identified with opposite
orientations (cf. Figure 5, left). A polygonal presentation P is defined as a set of words.

• The geometric realization of P, denoted |P|, is the topological space obtained by gluing together the
paired edges of the polygons described by its words. For instance, the geometric realization of P = {abab}
is a torus (cf. Figure 4). Other examples are given in Figure 5, 6, and 7. Two polygonal presentations
are said to be topologically equivalent if and only if their geometric realizations are homeomorphic.

• A surface presentation is defined as a polygonal presentation P where each element a ∈ S occurs
exactly twice. In this case, we can prove than |P| is a compact 2-manifold without boundary. Conversely,
it can be shown that any compact 2-manifold without boundary admits a surface presentation P.

• Finally, combinatorial operations on surface presentations prove that any surface presentation is topolog-
ically equivalent to either:

– the canonical surface presentation of the sphere:

P = {aa−1} (1)

– the canonical surface presentation of the connected sum of g ≥ 1 tori:

P = {a1b1a−11 b−11 . . . agbga
−1
g b−1g } (2)

– the canonical surface presentation of the connected sum of g ≥ 1 projective planes:

P = {a1a1 . . . agag} (3)

The classification above was for compact 0-manifolds with boundary, compact 1-manifolds with boundary, but
only for compact 2-manifolds without boundary. The only missing piece is the classification of compact 2-
manifolds with boundary. It turns out that these are simply compact 2-manifolds without boundary from which

5

∼= R2

∼= H2

∼= H ∼= R

∼= ?

Figure 8: X = {(x, y) | x2 + y2 ≤
1}∪{(x, 0) | x ∈ [−2,−1]} is a non-
manifold space: there exists no n
such that X is everywhere locally
homeomorphic to either Rn or Hn.

Figure 9: A two-dimensional simpli-
cial complex. The union of the sim-
plices is in general a non-manifold
space. Though, some connected
components may be manifolds.

Figure 10: Left: minimal simplicial
decomposition of S2 (14 simplices).
Middle: minimal CW decomposi-
tion (2 CW-cells). Right: minimal
PCS decomposition (1 PCS-cell).

we remove the interior of k ≥ 0 disjoint closed disks, which can be formally achieved by taking the connected
sum with k ≥ 0 disks. We illustrate this classification in Figure 3. Finally, we recall an interesting theorem
that is useful to analyse the cut and uncut topological operators. The proof of this theorem is an intermediate
step in the proof of the classification of surfaces given above.

Theorem 1. The connected sum of a projective plane and a torus is homeomorphic to the connected sum of
three projective planes, i.e.:

P2#T2 ∼= P2#P2#P2 (4)

2.4 Non-manifold topological spaces

Compact manifolds are very convenient to study, but unfortunately not all compact topological spaces are
compact manifolds, as for instance the one illustrated in Figure 8. To include this example and many others
(but not all compact topological spaces, which would be too general), a wider class of topological spaces has been
defined: those that can be obtained by “gluing together” simple manifold pieces. For instance, the topological
space in Figure 8 can be obtained by gluing a segment with a disk. Topological spaces defined within this general
framework are commonly refered to as complexes, such as simplicial complexes and CW complexes, which we
recall in this section. As noted in [Edelsbrunner and Harer, 2010, Ch. III, p. 51], one of the most important
characteristic that makes each kind of complex different from one another is how “simple” the glued pieces
are. The simpler the pieces, the more pieces you need to decompose a given space (cf. Figure 10). Therefore,
choosing the right formalism to tackle a given topological problem is a trade-off between the complexity of each
piece, and the number of pieces you need to decompose a given space. For instance, the pieces of a simplicial
complex are called simplices and are n-dimensional triangles, while the pieces of a CW complex are called cells
and are homeomorphic to an n-dimensional open disk. Thus, a simplex is a special case of a cell, meaning that
the pieces of CW complexes are “more complex” than the pieces of simplicial complexes. As a consequence, the
sphere can be decomposed with only two cells, while it requires 14 simplices. In this report, we introduce the
PCS complex, whose pieces, also called cells for lack of a better name, are only required to be homeomorphic to
the interior of a compact manifold. Thus, a “CW-cell” is a special case of a “PCS-cell”, meaning that the pieces
of PCS complexes are “even more complex” than the pieces of CW complexes, and can for instance decompose
the sphere as a single PCS-cell.

Abstract simplicial complexes An abstract simplicial complex [Edelsbrunner and Harer, 2010, p. 53] is a
finite collection of sets A such that:

(α ∈ A and β ⊆ α) ⇒ β ∈ A (5)

The elements α in A are called simplices, and each simplex is given as the set of its vertices. The dimension
of a simplex is dim α = card α− 1, and the dimension of the complex is the maximum dimension of any of its
simplices. Intuitively, a two-dimensional abstract simplicial complex is a triangle mesh made of vertices, edges
and triangles (possibly non-manifold, with dangling edges or isolated vertices), as illustrated in Figure 9. The
formal definition ensures that if a triangle defined by the vertices {0, 1, 2} is part of the complex, then all the
vertices {0},{1}, and {2}, and all the edges {0, 1},{0, 2}, and {1, 2} are also part of the complex, and they are
called the boundary simplices of the triangle.

6

CW complexes Let us first formally define this concept, then right after provide the intuition behind the
formalism. First, we define the n-disk, its interior the open n-disk, and its boundary the (n-1)-sphere as:

Dn = {x ∈ Rn | ‖x‖ ≤ 1}, (6)
◦
Dn = int(Dn) = {x ∈ Rn | ‖x‖ < 1}, (7)

Sn−1 = ∂Dn = {x ∈ Rn | ‖x‖ = 1}. (8)

An n-cell c is defined as a topological space homeomorphic to int(Dn). A cell decomposition C of a topological
space X is a collection of disjoints cells ci such that X =

⋃
i ci. The n-skeleton Xn of X is the union of k-cells

of C such that k ≤ n. Finally, K = (X, C) is called a CW complex if it satisfies:

• Axiom 1: (‘Characteristic maps’)

For each n-cell c ∈ C, there exists a continuous function Φc : Dn → X such that the restriction of Φc to
int(Dn) is an homeomorphism from int(Dn) to c, and such that Φc(∂Dn) ⊆ Xn−1.

• Axiom 2: (‘Closure finiteness’)

The closure c intersects only a finite number of other cells.

• Axiom 3: (‘Weak topology’)

A ⊆ X is closed iff A ∩ c is closed for each c ∈ C.

Despite the fact that the last two axioms are those responsible for the acronym “CW”, you can safely ignore
them in this report, since they are automatically true if the number of cells is finite, which should always be the
case for computer graphics applications. Therefore, let us simply clarify this obscure CW complex definition
by focusing on the preliminary definitions and the first axiom. Since an n-cell is a pointset homeomorphic to
int(Dn), this means that a 0-cell (called vertex) is a single point in space, a 1-cell (called edge) is a pointset
homeomorphic to the open interval (−1, 1), and a 2-cell (called face) is a pointset homeomorphic to the open

2-disk
◦
D2. A two-dimensional cell decomposition of a topological space X is therefore a partition of X into

vertices v ∼= {0}, edges e ∼= (−1, 1) and faces f ∼=
◦
D2.

invalid CW
complex

valid CW
complex

Figure 11: Two valid cell decom-
positions of a cross, but only one
is a valid CW complex.

However, this allows spaces like X = R to be decomposed as a single cell
e = R, since R ∼= (−1, 1). Also, this allows a cross to be decomposed
as four vertices and three edges (cf. Figure 11, top). Because we do not
want these decompositions to be valid CW complexes, Axiom 1 adds some
restrictions. In the case of edges, instead of “simply” requiring e ∼= (−1, 1),
we require the existence of a continous function Φe : [−1, 1] → X such that
Φe((−1, 1)) = e. This way, even though edges are “open intervals”, they
are forced to “look like interior of closed intervals”, thus the edge e = R
is not allowed as part of a CW complex. Finally, Axiom 1 also requires
that Φe(−1) and Φe(1) be included in the 0-skeleton of C. In other words, it
requires that the “edge boundary” ∂e = e\e is made of vertices that are part
of the decomposition. This additional requirement enforces the existence of
a vertex at the intersection of the cross (cf. Figure 11). We note that Φe restricted to (−1, 1) must be an
homeomorphism (in particular, must be invertible), but it is not required that Φe be invertible on the whole
domain of definition [−1, 1]. This prevents self-intersections in the interior of the edge, but allows Φe(−1) to
be equal to Φe(1). In other words, it is allowed that the start vertex of the edge is equal to the end vertex.
All these considerations scale for faces: the closure of a face must be compact, the boundary of a face must be
included in a union of vertices and edges, and faces cannot self-intersect in their interior, but their boundary
can “use” the same vertex or edge several times. For instance, the boundary of a face can be a single vertex (cf.
Figure 10, middle), or even a single point in the interior of an edge (cf. Figure 18), or can do “switch-backs” in
the interior of an edge (cf. Figure 19).

2.5 Geometric realizations and quotient spaces

The reader may have noticed that the definition of CW complexes that we have given differs greatly from
the definitions of polygonal presentations and abstract simplicial complexes because it relies on the existence

7

of a topological space X, that we decompose into cells. On the contrary, a polygonal presentation or an
abstract simplicial complex is not a topological space per se, but a combinatorial description of one. From such
combinatorial description, one can build the corresponding topological space, called its geometric realization,
by “gluing” together known topological spaces, which is formally done using the concept of quotient space that
we recall in the following paragraph.

X =
0 1 2 3 4 5

Y =
P

(0, 1]

(2, 3]

(4, 5]

Figure 12: Ilustration of X =
[0, 1]∪ [2, 3]∪ [4, 5], and the quo-
tient space Y = X/ ∼ defined by
0 ∼ 2 ∼ 4.

Let X be a set, and let ∼ be an equivalence relation on X. For instance,
let us take as a very simple example X = {1, 2, 3} and ∼ defined such that
1 ∼ 2, 1 6∼ 2, and 2 6∼ 3. The equivalence classes of ∼ are defined
as a partition of X into subsets regrouping elements that are equivalent to
each others. In our example, there are two equivalence classes: E = {1, 2}
(since 1 and 2 are equivalent) and F = {3} (since 3 is not equivalent to any
other elements). The quotient set of X by ∼, denoted X/ ∼, is defined
as the set of equivalence classes of ∼. Therefore, in our example, we have
X/ ∼= {E,F} = {{1, 2}, {3}}. In other words, quotienting a set by an
equivalence relation can be understood as transforming elements that were
equivalent into a single element. The concept of quotient space is very
similar, except that it acts on topological spaces instead of sets. This means that in addition to define Y = X/ ∼
as the set of equivalence classes of ∼, it also makes Y a topological space by defining which subsets of Y are
“open”. More specifically, the open subsets of Y are defined as the sets of equivalent classes whose unions are
open sets in X. This means that two equivalent classes E and F are “close-by” in Y if and only if there exist
xE ∈ E and xF ∈ F that were originally “close-by” in X. For instance, consider X = [0, 1] ∪ [2, 3] ∪ [4, 5], i.e.
X ⊂ R is a disjoint union of three closed intervals (cf. Figure 12, top). Then let us consider the equivalence
relation ∼, defined by 0 ∼ 2, 0 ∼ 4 and 2 ∼ 4, all other pairs of real number in X not being equivalent. This
means that the set P = {0, 2, 4} is one equivalence class, and every other element x ∈ X is its own equivalence
class {x}. By using the convenient notation (a, b] = {{x} | x ∈ (a, b]}, then we have Y = (0, 1]∪(2, 3]∪(4, 5]∪{P}.
Because 0 was in the closure of (0, 1] in X, and 0 ∈ P , it can be shown that P is in the closure of (0, 1] in Y .
Similarly, it can be shown that P is in the closure of (2, 3] and (4, 5]. Therefore, the closures of (0, 1], (2, 3],
and (4, 5] intersect in Y (at P), while the closures of (0, 1], (2, 3], and (4, 5] did not intersect originally in X.
This is why it is said that using this operation, the three closed intervals [0, 1], [2, 3], and [4, 5] have been glued,
by identifying the three real numbers 0, 2 and 4 as a single element. Quotienting X by ∼ has transformed a
disjoint union of three closed intervals (a 1-manifold with boundary) into a star-like shape with three branches
(a non-manifold space), as illustrated in Figure 12.

With this formalism, the geometric realization of an abstract simplicial complex, called a simplicial
complex (i.e., not abstract), can be easily defined as a disjoint union of points, segments, triangles, and
n-dimensional triangles that are glued together by identifying their common boundaries with a well-chosen
equivalence relation. The reverse viewpoint can also be taken: given a possibly non-manifold topological space
X (in a sense, “already glued”), and a decomposition of X into subsets homeomorphic to points, interior of
segments, interior of triangles, and interior of n-dimensional satisfying a few properties on their boundaries,
then it is called a simplicial complex, and its corresponding abstract simplicial complex can be defined.

v1 e1 v2

e2

f

Figure 13: The space Figure 8
can be seen as a CW complex
obtained by gluing together two
points, two closed intervals and
one disk. The double-arrows rep-
resent the equivalence relation
for the glue operation.

Similarly, CW complexes can be defined either as we did (i.e., “Let X be
a topological space. If there exists a cell-decomposition C such that there
exists functions Φc satisfying [...], then (X, C) is called a CW complex”), or
by building them, via the explicit definition of characteric maps Φc gluing
disjoint n-disks together. For instance, the space in Figure 8 is homeomorphic
to a CW complex that can be built explicitly as follows. We first define X
as the disjoint union of two points v1 and v2 (0-cells), two closed intervals
e1 and e2 (1-cells, parameterized as [−1, 1]), and one disk f (2-cell, whose
boundary is parameterized [0, 2π)). We then define Φe1(−1) = v1, Φe1(1) =
v2, Φe2(−1) = v2, Φe2(1) = v2, Φf (θ = 0) = v2, and Φf (θ ∈ (0, 2π)) =
θ
π −1 ∈ e2. From these characteretic maps, an equivalence relation ∼ can be
defined, identifying each point in the boundary of each n-cell to a point of a
k-cell, k < n, as illustrated in Figure 13. Quotienting X by this equivalence
relation gives the final CW complex Y = X/ ∼.

8

0 1 2 3 4 5 6 7

-0.5

0

0.5

1

-1

Figure 14: The continuous mapping Φ : [0, 4π] → R2

defined as Φ(t) = (sin(t) + 0.5t, cos(t)) is an immer-
sion. However, since the curve is self-intersecting, the
mapping is not injective and hence Φ is not an em-
bedding.

Figure 15: Two immersions of the Klein bot-
tle in R3. Both immersions intersect them-
selves in a closed curve whose preimage consists
of two loops. Image and caption inspired from
[Edelsbrunner and Harer, 2010].

The geometric realization of a polygonal presentation, informally described in Section 2.3, is also formally
defined via quotient spaces. Each word of size k defines a regular polygon with k edges, and points in the
boundary of each polygon are identified to each other via the symbols in the words. This defines an equivalence
relation, which subsequently defines the geometric realization as a quotient space.

Let us recall what we have learnt. We have a combinatorial structure called polygonal presentation, from which
we can define a geometric realization using quotient spaces. We have a combinatorial structure called abstract
simplicial complex, from which we can define a geometric realization using quotient spaces. Finally, we have a
structure called CW complex, that can be defined using quotient spaces. However, CW do not (and cannot)
have a “combinatorial description”, because the characteristic maps still lie in the continuous world. Therefore,
the notion of geometric realization does not apply for CW complexes. This makes them very inconvenient to
implement on a computer. At the contrary, the notion of PCS complex that we introduce in this report does
have a combinatorial description (called abstract PCS complex), even though it borrows most ideas from CW
complexes.

2.6 Immersions vs. embeddings

A map Φ is defined as a continuous function between two topological spaces X and Y . Alternatively, we can
call it an immersion of X into Y , and we say that X is immersed in Y . In addition, if Φ is injective then it is
called an embedding, and we say that X is embedded in Y . Intuitively, an embedding is an immersion that does
not produce self-intersections, as illustrated in Figure 14.

If the space Y is too low dimensional, there may not exist an embedding of X into Y . A classical example
are non-orientable compact 2-manifolds without boundary, such as the Klein bottle, that can be embedded in
R4 but not in R3. Hence, if S is an abstract simplicial complex representing a Klein bottle, and X = |S| is a
geometric realization of S, then every mapping from X to Y = R3 will produce self-intersections, as illustrated
in Figure 15.

Combinatorial structures have the advantage to enable defining an immersion of their geometric realization
(and hence making possible to visualize it and manipulate it in 2D or 3D), without actually constructing the
geometric realization itself that would require additional dimensions. This is actually very standard in 3D
polygon modeling: a Klein bottle can be easily modeled with any triangle mesh structure supporting non-
orientable meshes. This will result in intersections of some triangles, but these intersections are not tracked and
the intersecting triangles just ignore each others, which is the behaviour all polygon modeling artists expect.
We use exactely the same principle with the VGC: instead of working with an embedding, as planar maps do,
we work with an abstract combinatorial structure that is immersed in R2. The actual geometric realization of
the VGC does not have to be explicitly constructed, very fortunately (cf. Section 8.3).

9

Figure 16: Left: Using Lego blocks, the above shape can be built in billions different ways. Middle: A
decomposition involves at least four blocks, but there is no uniqueness of such a minimal decomposition. Right:
If more building blocks were available, we can imagine that it could be decomposed with a single block, in which
case we would have uniqueness of a minimal decomposition.

3 Motivations and overview

The main idea behind the PCS complex is to represent a two-dimensional non-manifold topological space as
a decomposition into “as generic as possible” manifold pieces that are called vertices, edges and faces. This
genericity comes from the goal to allow decompositions involving as few pieces as possible, for more flexibility
for the artist, and to provide uniqueness of a minimal decomposition. For instance, we want to be able to
represent a circle with a single closed edge, without the need to arbitrarily break it by inserting a vertex when
no such vertex is relevant for the artist. Similarly, we want to represent a sphere as a single cell, as well as a
torus, a Klein bottle, or any surface without boundary.

The choice of the available pieces to decompose topological spaces is a balance between simplicity and flexibility,
depending on the application. The use of very simple pieces makes possible to have a lot of common properties
for each of them, but on the other hand a lot of them might be necessary to decompose a given space. Conversely,
very generic pieces make possible to have compact decompositions involving very few pieces, but then so
little is known about each of them that it might not be useful to decompose the space in the first place
(for instance, if pieces are so generic that every space can be decomposed into one piece, then it defeats the
purpose of decomposition). Traditionally, decomposing a non-manifold topological space X into manifold pieces
is done either via a simplicial complex, or a CW complex. These two approaches both have their benefits, and
have been extensively popular notably because they scale in dimension. However, none of these complexes
use pieces “generic enough” to ensure uniqueness of a minimal decomposition, a simple analogy using Lego
blocks is illustrated in Figure 16. The Selective Geometric Complex (SGC) [Rossignac and O’Connor, 1989]
provides uniqueness of a minimal decomposition, but relates to algebraic varieties while we are interested in
topological manifolds. In addition, the CW complex does not admit a presentation scheme, i.e. a purely
combinatorial structure whose geometric realization would be a CW complex, and hence are not suitable for
computer implementation. The SGC admits a computer implementation, but it must include the definition of
its extents, i.e. the coefficients of the polynomial equations defining the topological space. Hence, we cannot
really say that it is a presentation scheme, but rather that the SGC itself, as an embedded topological space, is
a combinatorial structure. In other words, a SGC cannot be defined separately from its geometric realization.

In our case, we are focused on two-dimensional topological spaces (possibly non-orientable or non-manifold),
and the dimension two is very special in the sense that manifolds of dimension two and lower have all been
classified. We use this at our advantage to propose a new notion of cell complex, similar to CW complexes,
but specifically tailored to behave well in the two-dimensional case. Its cells are more flexible than CW cells,
but we impose much stricter constraints on how cells can be glued together. These ad hoc constraints may
seem rather arbitrary, but in the specific case of the dimension two or less, they make possible to define a
representation scheme similar to the Vector Graphics Complex [Dalstein et al., 2014], and hopefully (not yet
proven) ensure uniqueness of a minimal decomposition, while still representing the same class of topological
spaces as 2D simplicial complexes and 2D regular CW complexes.

4 PCS complex

In this section, we introduce the concept of PCS complex, inspired by the concept of CW complex. It redefines the
notion of cell to make them more generic (homeomorphic to the interior of any compact manifold), but is limited
to two-dimensional spaces and introduce ad hoc gluing constraints (to make it combinatorially representable).

10

The section is organized as follows. First, in Section 4.1, we define the notion of cell complex for arbitrary
dimension (though, designed specifically to work well in the dimension two or less, and likely useless for any
higher dimension), then in Section 4.2, we prove a few properties true for arbitrary dimension. In Section 4.3,
we compare our cell complexes to CW complexes. Finally, in Section 4.4, we define a PCS complex as a cell
complex of dimension at most two, and exhaustively characterize all possible types of vertices, edges, and faces,
and how they are allowed to be glued together. This characterization is much less compact than the original
definition, but provides insight on what exactly does the definition allow, and is of primary importance for the
link with abstract PCS complexes. The first three subsections are highly theoretical and with very few pictures,
but the last one is more practical and with more examples. Therefore, we recommend the reader unfamiliar
with CW complexes to directly jump to Section 4.4, and go back to the formal definitions later.

4.1 Cell complex

Throughout this report, a topological space means a Hausdorff topological space, and a n-manifold means a
topological n-manifold with boundary.

Cell An n-cell c is a topological space homeomorphic to the interior of a connected compact n-manifold. The
dimension of c is dim c = n. A cell is an n-cell for some n. For n = 0, 1, and 2, we call them vertices, edges
and faces.

Cell decomposition Let X be a topological space. A cell decomposition C of X is a finite collection of
disjoints cells ci such that X =

⋃
i ci. The n-skeleton Xn of X (resp. the n-skeletonset Cn of C) is the

union (resp. the set) of all the k-cells of C such that k ≤ n. The smallest n such that Xn = X is called the
dimension of (X, C).

Pointsets and set of pointsets We will often refer to objects that are either pointsets or sets of pointsets,
and it is important not to confuse them. For instance, X is a pointset, a cell c is a subset of X and hence is also
a pointset (a set of points p ∈ X). A union of cells is also a pointset. However, a set of cells, such as C, is not
a pointset but a set of pointsets. A subset C′ ⊂ C is also a set of pointset. If ci are pointsets, and Cj are sets
of pointsets, we introduce the notation c′ =< c1, . . . , ck, C1, . . . , Cm > to conveniently define c′ as the pointset
obtained by the union of the pointsets ci and of the pointsets in the sets Cj . For instance, < c1, c2 >= c1 ∪ c2,
< C >= X, and < Cn >= Xn.

Closure and boundary The closure of a cell c ∈ C, denoted c, is the closure of c in X. The boundary
of a cell c ∈ C, denoted ∂c, is defined as the set difference c \ c. An edge whose boundary is empty is called a
closed edge, otherwise it is called an open edge.

Cell complex Let X be a topological space and C be a cell decomposition of X. The pair K = (X, C) is
called a cell complex if and only if, for each n-cell c ∈ C, there exist a connected compact n-manifold Mc and
a map Φc : Mc → X satisfying the following cell complex constraints:

• The restriction of Φc to int(Mc) is an homeomorphism from int(Mc) to c.

• For each connected component Bc,i of ∂Mc, either:

1. there exists a cell decomposition Dc,i of Bc,i such that for all dc,i,j ∈ Dc,i, the restriction of Φc to
dc,i,j is an homeomorphism from dc,i,j to a cell ec,i,j ∈ C, or

2. the image of Bc,i by Φc is a single vertex vc,i ∈ C, or

3. the boundary component Bc,i is homeomorphic to S1, it is mapped by Φc to a single closed edge
ec,i ∈ C, and the restriction of Φc to Bc,i “wraps Nf,i times around ec,i”, for some Nf,i ∈ N+.

In other words, Φc must be an “homeomorphism by part” from cells decomposing Mc to cells of C (case 1.),
with the first exception that a connected component of ∂Mc is allowed to shrink to a single vertex (case 2.), and
the second exception that a connected component of ∂Mc homeomorphic to S1 is allowed to be mapped to a
closed edge by wrapping around it several times (case 3.). We illustrate these cases in Figure 17, and formalize
below what we mean by “wraps Nf,i times around ec,i”.

11

X =

Bc,i

ec,i,j ∈ C

X = X =

Bc,i
vc,i ∈ C

Bc,i
ec,i ∈ C

1. Homeomorphic by part 2. Shrink to a vertex 3. Wrap around a closed edge

Figure 17: The three possible “gluing conditions” that each connected component Bc,i of the boundary of each
cell c must satisfy. We illustrate them for dim c = 2, since it is the dimension for which they have been designed.
Top: How each connected component of the boundary of the characteristic manifold is glued to cells of lower
dimension. Bottom: The actual, glued topological space X. In terms of abstract PCS complex, these three
cases correspond to the three types of cycle. From left to right: non-simple cycle, Steiner cycle, and simple
cycle.

Wrapping circles around circles Let A and B be two spaces homeomorphic to the circle S1. We say that a
map Φ : A→ B wraps N > 0 times around B if and only if there exist two homeomorphisms ΦA : A→ S1
and ΦB : B → S1 such that:

Φ = Φ−1B ◦WN ◦ ΦA (9)

where, by using the usual parameterization θ ∈ [0, 2π) of S1, WN : S1 → S1 is the continuous map defined by:

WN (θ) = Nθ (10)

Characteristic objects The connected compact n-manifold Mc is called the characteristic manifold of
c, and the map Φc is called the characteristic map of c.

Cell neighbourhood We define the boundary cells of c as the set Bc of all ec,i,j , vc,i, and ec,i. The star
of a cell c ∈ C is defined as the set of cells

Sc = {c′ ∈ C | c ∈ Bc′}. (11)

Dimension The dimension of a cell complex is defined as the dimension of its cell decomposition. A cell
complex of dimension n is also called an n-complex for conciseness.

4.2 Relation between ∂c and Bc, compactness, and subcomplexes

For the sake of completeness and comparison with CW complexes, we formally prove in this section a few
immediate properties that cell complexes (in a PCS sense) satisfy, for arbitrary dimension. The reader not
familiar with CW complexes may safely skip this section. Let (X, C) be a cell complex. Then we have:

Lemma 1. ∀c ∈ C, Bc ⊆ Cn−1, where n = dim c.

Proof. If n = 0, then Mc is a singleton and ∂Mc = ∅ so there are no Bc,i hence no vc,i, ec,i, or ec,i,j and Bc = ∅.
Let n ≥ 1. Since dim vc,i = 0, then dim vc,i ≤ n − 1 and vc,i ∈ Cn−1. The case where Bc contains a cell of

12

type ec,i can only occur when n ≥ 2, so we also have ec,i ∈ Cn−1. Since dc,i,j is a cell of Bc,i and that Bc,i is a
compact (n− 1)-manifold, we have dim dc,i,j ≤ n− 1. In addition, dim ec,i,j = dim dc,i,j since Φc restricts to an
homeomorphism from dc,i,j to ec,i,j , hence dim ec,i,j ≤ n− 1 and ec,i,j ∈ Cn−1.

Lemma 2. ∀c ∈ C, Φc(∂Mc) =< Bc >.

Proof. We have ∂Mc =
⋃
i Bc,i, hence Φc(∂Mc) =

⋃
i Φc(Bc,i). The image of Bc,i is either a single vertex vc,i

(case 2.), a closed edge ec,i (case 3.), or Bc,i =
⋃
j dc,i,j (case 1.) in which case Φc(Bc,i) =

⋃
j Φc(dc,i,j) =

⋃
j ec,i,j .

Hence, Φc(∂Mc) =< . . . , vc,i, . . . , ec,i,j , . . . , ec,i, · · · >=< Bc >.

Lemma 3. ∀c ∈ C, c = Φc(Mc).

Proof. If Φ : X → Y is a map and X ′ ⊆ X, then Φ(X ′) ⊆ Φ(X ′). Thus in our case:

Φc(Mc) = Φc(int(Mc)) ⊆ Φc(int(Mc)) = c.

In addition, Φc(Mc) is compact as a continuous image of a compact, thus Φc(Mc) is closed in X since X is
Hausdorff. Considering that c is defined as the intersection of all closed set in X containing c, that Φc(Mc)
contains c, and that Φc(Mc) is closed in X, it proves that c ⊆ Φc(Mc). Hence, we proved that Φc(Mc) ⊆ c ⊆
Φc(Mc) thus c = Φc(Mc).

Lemma 4. ∀c ∈ C, c =< c, Bc >.

Proof. c = Φc(Mc) = Φc(int(Mc) ∪ ∂Mc) = Φc(int(Mc)) ∪ Φc(∂Mc) = c∪ < Bc >.

Proposition 1. ∀c ∈ C, ∂c =< Bc >.

Proof. ∂c = c\ c =< c, Bc > \c =< Bc > since Bc ⊆ Cn−1 and dim c = n thus c /∈ Bc.

Proposition 2. X is compact.

Proof. ∀c ∈ C, c ⊆ c and c ⊆ X thus X =
(⋃

c∈C c
)
⊆
(⋃

c∈C c
)
⊆ X. Hence, all inclusions are equalities, and X

is compact as a finite union of compacts.

Proposition 3. ∀c ∈ C, ∂c is compact and closed in X.

Proof. The boundary of a compact manifold is compact, hence ∂Mc is compact, and then Φc(∂Mc) =< Bc >=
∂c is compact. Thus, it is closed in X since X is Hausdorff.

Proposition 4. ∀c ∈ C, (∂c,Bc) is a cell complex.

Proof. ∂c =< Bc > hence Bc is a cell decomposition of ∂c. Let c′ ∈ Bc, and n′ = dim c′. The existence of a
manifold Mc′ , a map Φc′ : Mc′ → X, decompositions Dc′,i of Mc′ and cells vc′,i ∈ C, ec′,i ∈ C, and ec′,i,j ∈ C
comes directly from the fact that (X, C) is a cell complex. We only need to verify that Φc′ : Mc′ → ∂c (instead
of X) and that vc′,i ∈ Bc, ec′,i ∈ Bc and ec′,i,j ∈ Bc (instead of C).

We know that c′ ∈ Bc, thus c′ ⊆ ∂c, thus c′ ⊆ ∂c (because ∂c is closed in X), thus Φc′ : Mc′ → ∂c (because
Φc′(Mc′) = c′). In addition, the cells vc′,i, ec′,i and ec′,i,j are images of restrictions of Φc′ thus are subsets of
Φc′(Mc′), thus are subset of ∂c, hence are elements of Bc.

Corollary 1. ∀c ∈ C, (c, {c} ∪ Bc) is a cell complex.

Proof. We are just adding c to the complex above, and we know that Φc : Mc → c, as well as the cells vc′,i,
ec′,i,j and ec′,i are in {c} ∪ Bc since they are by definition in Bc.

Proposition 5. ∀c ∈ C, if c′ ∈ Bc then Bc′ ⊆ Bc. In other words, the relation “c′ is in the boundary of c” is
transitive:

(c′′ ∈ Bc′ ∧ c′ ∈ Bc) ⇒ c′′ ∈ Bc

Proof. If c′ ∈ Bc then c′ ⊆ ∂c. Hence, c′ ⊆ ∂c since ∂c is closed, from which it follows that ∂c′ ⊆ ∂c since
∂c′ = c′\c′. Thus < Bc′ >⊆< Bc >, thus Bc′ ⊆ Bc.

13

v1

v2

e

f

X = S2 ∪ {(1, t, 0) | t ∈ [−1, 1]}

valid CW complex

invalid PCS complex

v1

v2

e1

f

v3

e2

valid CW complex

valid PCS complex

v1 = {(1, 1, 0)}

v3 = {(1, 0, 0)}

e = {(1, t, 0) | t ∈ (−1, 1)}

f = S2 \ {(1, 0, 0)}

e1 = {(1, t, 0) | t ∈ (0, 1)}

v2 = {(1,−1, 0)}

e2 = {(1, t, 0) | t ∈ (−1, 0)}

Figure 18: Left: Counter-example showing that
Proposition 1 is not true for CW complexes: ∂f is not
equal to any union of other cells, but only “included”
in such a union (e.g., ∂f = {(1, 0, 0)} ⊂ e). Right:
A valid PCS decomposition of X requires adding the
additional vertex v3 splitting e into e1 and e2.

Bf,1

Mf

valid CW complex

invalid PCS complex

valid CW complex

valid PCS complex

v1
v4

v2

v3

e3

e4

e1

e2

v1
v4

v2

v3

e3

e4

e1

e2

v5

v6

e5

e6

ff

Figure 19: Top-left: The boundary of a CW face is al-
lowed to do “switch-backs” within an edge. Top-right
and bottom: A valid PCS decomposition ofX requires
the additional vertices v5 and v6 so that Φf (Bf,1) is
homeomorphic by part from vertices and edges de-
composing Bf,1 to vertices and edges of C.

4.3 Comparison with CW complexes

Our definitions of cell, cell decomposition and cell complex differ from the ones of CW complexes, thus there are
a few differences that are worth noting. In this section, we use the terms PCS-cell, PCS-cell decomposition and
PCS-cell complex to refer to our definition (for arbitrary dimension), while we use the terms CW-cell, CW-cell
decomposition and CW-cell complex for the classical definition.

A n-CW-cell is a specific case of n-PCS-cell, since a n-CW-cell is homeomorphic to int(Dn), and that Dn is
a connected compact n-manifold. Likewise, a finite CW-cell decomposition is a specific case of a PCS-cell
decomposition. Note that PCS-cell decompositions are enforced to be finite, while CW-cell decompositions can
be infinite.

However, a finite CW-cell complex is not necessarily a PCS-cell complex. Indeed, even though the definition
of PCS-cells is more general than CW-cells, the “gluing conditions” that PCS-cells must satisfy to define a
PCS-cell complex are stricter than those for CW-cell complexes. Indeed, we replaced Φc(∂Mc) ⊆ Xn−1 by a
stricter version imposing, for each connected component Bc,i of ∂Mc, that Φc(Bc,i) is either homeomorphic by
part from PCS-cells decomposing Bc,i to PCS-cells of C (case 1.), or maps Bc,i to a single vertex (case 2.), or,
if Bc,i ∼= S1, wraps it around a closed edge (case 3.). In other words, a CW-cell has a lot of freedom on how to
be glued to lower dimensional CW-cells, but a PCS-cell must be glued to lower dimensional PCS-cells in a very
controlled and non-pathological way. For instance, the boundary of a PCS-face cannot be mapped into a strict
subset of an edge (cf. Figure 18), or do “switch-backs” in the interior of an edge (cf. Figure 19). This imposes a
cleaner incidence structure as illustrated by Proposition 1, that is not true with CW-cell complexes: there may
not exist Bc ⊆ Cn−1 such that ∂c =< Bc >, Figure 18 being a counter-example. This regularity makes possible
to describe combinatorially a PCS-cell complex. Note that this regularity is still less strict than the notion of
regular CW complex [Hatcher, 2001, p. 534], which is too strict to provide uniqueness of a minimal complex.

14

Figure 20: A valid 1-complex. It can be seen as an extension of multigraph to support closed edges.

cells must be manifold pointsets cells must be disjointcells must be
connected pointsets

open edges must
have end vertices

va
li

d
in

va
li

d

e

e1
e2

e3

v1

e′
e′′

e4

e5 e6

v2
e7

e8

v3

e

e′

e1
e2

e3

e4

e e′

e1

e2
e3

e4

v

e e′
e′′

e1

v1

v2

e2

e3

e′′

v3

Figure 21: Invalid 1-complexes (top), and how to make them valid (bottom).

4.4 PCS complex

A PCS complex is defined as a cell complex of dimension at most two. Hence, its cells are either vertices,
edges, or faces. In this section, we analyze in depth what the general definition of cell complex means for
each type of cells in a PCS complex, which allows us to provide a detailed characterization of them. This
characterization can be seen as an alternate, less compact definition of PCS complex, which provides the link
between PCS complexes and abstract PCS complexes.

Vertices Vertices are 0-cells, i.e. pointsets homeomorphic to the interior of a connected compact 0-manifold.
Up to homeomorphism, there exists only one connected compact 0-manifold:

• V: the singleton R0 = {0} whose interior is R0 and boundary is ∅.

Hence, a pointset v is a vertex if and only if it is a singleton, in which case its characteristic manifold is Mv = V.

Since ∂V = ∅, a vertex automatically satisfies the cell complex constraints. Therefore, cell complexes of
dimension 0 are finite sets X. They admit a unique cell decomposition C = {{x}, x ∈ X}.

Edges Edges are 1-cells, i.e. pointsets homeomorphic to the interior of a connected compact 1-manifold. Up
to homeomorphism, there exist only two connected compact 1-manifolds:

• E|: the segment D1 = [−1, 1] whose interior is (−1, 1) and boundary is {−1, 1}.

• E◦: the circle S1 whose interior is S1 and boundary is ∅.

Hence, a pointset e is an edge if and only if it is homeomorphic to (−1, 1) or S1. In the first case, it is called
an open edge and its characteristic manifold is Me = E|. In the second case, it is called a closed edge and its
characteristic manifold is Me = E◦.

15

vf,i,1

Nf,i = 0 Nf,i ≥ 1

Nf,i vertices vf,i,j1 closed edge ef,i,1 Nf,i open edges ef,i,j

ef,i,1 ef,i,Nf,i

vf,i,1

vf,i,Nf,i

vf,i,2
vf,i,3

vf,i,4
ef,i,1

ef,i,2

ef,i,3

Figure 22: The only possible cell decompositions Df,i of a boundary component Bf,i of Fε,g,k.

Since ∂E◦ = ∅, a closed edge e automatically satisfies the cell complex constraints. Let e be an open edge.
Its characteristic manifold E| = [−1, 1] has a non-empty boundary ∂E| = {−1, 1} made of two connected
components Be,start = {−1} and Be,end = {1}. For each Be,i, the two cases 1. and 2. of the cell complex
constraints are equivalent to:

∃ve,i ∈ C, Φe(Be,i) = ve,i. (12)

The case 3. does not apply since Be,i is not homeomorphic to S1. Therefore, a decomposition of X into a finite
disjoint union of vertices and edges is a cell complex of dimension 1 if and only if:

for all open edge e ∈ C,

there exist

 Φe : [−1, 1]→ X continuous
ve,start ∈ C
ve,end ∈ C

such that

 Φe : (−1, 1)→ e homeomorphism
Φe(−1) = ve,start
Φe(1) = ve,end

(13)

This is illustrated in Figure 20. Invalid cell complexes of dimension 1 are illustrated in Figure 21.

Faces Faces are 2-cells, i.e. pointsets homeomorphic to the interior of a connected compact 2-manifold. Up
to homeomorphism, there exist only three “kinds” of connected compact 2-manifolds (cf. Section 2.3):

• F�,0,k: the sphere with k holes.

• F�,g,k: the connected sum of g ≥ 1 tori with k holes.

• F6�,g,k: the connected sum of g ≥ 1 projective planes with k holes.

Hence, a pointset f is a face if and only if it is homeomorphic to the interior of one of the above manifolds.
More formally, f is a face if and only if there exist ε ∈ {�, 6�}, g ∈ N and k ∈ N such that f ∼= int(Fε,g,k), in
which case it is called an (ε, g, k)-face and its characteristic manifold is Mf = Fε,g,k. All these characteristic
manifolds are illustrated in Figure 3 (right).

Now, let us characterize how the boundary components Bf,i of a face f are allowed to be glued to vertices and
edges. First, since Mf is a compact 2-manifold, we know that Bf,i is a compact 1-manifold without boundary,
i.e. Bf,i ∼= S1. This means that the three cases of the gluing constraints (cf. Figure 17) have to be considered,
and are not equivalent. The cases 2. and 3. do not need further analysis. However, let us explicit what the
case 1. means for faces, i.e. let us expand the definition in the specific case where Bf,i ∼= S1. Let us start by
the following lemma, illustrated in Figure 22:

Lemma 5. Let Df,i be a cell decomposition of Bf,i, and let Nf,i be the number of vertices in Df,i.

• If Nf,i = 0, then Df,i = {Bf,i}, i.e. the decomposition is a single closed edge.

• If Nf,i ≥ 1, then Df,i is decomposed into Nf,i vertices and Nf,i open edges.

16

Bounded double cone Rectangle glued to sphere

v

e1 e2

f1 f2

v

e1 e2
Mf1 = F�,0,2 Mf2 = F�,0,2

f1

f2
v1

v2 v3

v4

e1
e2

e3e4

Mf2 = F�,0,1Mf1 = F�,0,1

Figure 23: Two examples of valid PCS complexes. Top: The topological space X and its PCS decomposition.
Bottom: Characteristic manifolds of the faces, and how their boundary components are glued to the 1-skeleton.

Proof. By definitition, Df,i is a finite collection of disjoint cells df,i,j such that Bf,i =
⋃
j df,i,j . Since Bf,i ∼= S1,

it can only involve vertices and/or edges. Let N
(v)
f,i be the number of vertices and N

(e)
f,i the number of edges.

• Let assume N
(v)
f,i = 0. Hence, Bf,i is a finite disjoint union of edges. Since Bf,i is compact, but open edges

are not compacts (thus a finite union of open edges is not compact either), there exists at least an edge e

in Df,i that is a closed edge. However, the only closed 1-manifold included in S1 is S1 itself, thus N
(e)
f,i = 1

and Df,i = {e}.

• Let assume N
(v)
f,i ≥ 1, and let vf,i,j be the N

(v)
f,i vertices of Df,i. By fixing θ ∈ [0, 2π) a parameterization

of Bf,i, each vertex vf,i,j corresponds to a unique θf,i,j , and we assume θf,i,1 < θf,i,2 < · · · < θ
f,i,N

(v)
f,i

,

without loss of generality. Let ef,i,j be the pointset (θf,i,j , θf,i,j+1) ⊂ Bf,i. Since ef,i,j contains no vertices
of Df,i, then ef,i,j is included in a disjoint union of edges in Df,i. None of them can be a closed edge,

because it would contradict N
(v)
f,i ≥ 1 (see bullet above: if Df,i contains a closed edge e then Df,i = {e},

thus N
(v)
f,i = 0). Hence, ef,i,j is included in a disjoint union of m open edges in Df,i. Besides, it can be

shown that a disjoint union of m ≥ 2 open edges in S1 is a disconnected set, the connected components
being the m open edges. Therefore, since ef,i,j is a connected set, ef,i,j is actually included in a single
open edge e ∈ Df,i. In addition, we know that e contains neither θf,i,j nor θf,i,j+1 (since the cells of Df,i
are disjoint). In conclusion, ef,i,j = (θf,i,j , θf,i,j+1) is included in e, e is connected, and e contains neither
θf,i,j nor θf,i,j+1, therefore e = ef,i,j = (θf,i,j , θf,i,j+1). This proves that the ef,i,j are actually open edges
of Df,i. In addition, since the union of the vf,i,j and ef,i,j is equal to Bf,i, it proves that there are no

other cells in Df,i. In conclusion, N
(e)
f,i = N

(v)
f,i , and Df,i is a disjoint union of N

(v)
f,i vertices and N

(v)
f,i open

edges.

Using the above lemma, the cell complex constraints for a face f ∈ C can be rewritten to:

• Case 1a (Nf,i = 0): Bf,i is mapped homeomorphically by Φf to a single closed edge ef,i ∈ C, or

• Case 1b (Nf,i ≥ 1): Bf,i is decomposed into Nf,i ≥ 1 vertices, each mapped by Φf to a vertex vf,i,j ∈ C,
and Nf,i open edges, each mapped homeomorphically by Φf to an open edge ef,i,j ∈ C, or

• Case 2: Bf,i is mapped by Φf to a single vertex vf,i ∈ C, or

• Case 3: Bf,i is mapped by Φf by being wrapped Nf,i times around a closed edge ef,i ∈ C.

17

Figure 24: More examples of valid PCS complexes. Is has to be imagined embedded in R4, i.e. with no
“self-intersection” of the Klein bottle or the sphere with three holes glued together.

Finally, we can observe that Case 1a. is already taken into account by Case 3. (wrapping one time around a
closed edge), and therefore can be ignored. These three cases are illustrated in Figure 17.

By combining all the information that we have shown, we are finally able to provide a characterization of PCS
complexes: a decomposition of X into a finite disjoint union of vertices, edges and faces is a PCS complex if
and only if:

For all open edge e ∈ C,

there exist

 Φe : [−1, 1]→ X continuous
ve,start ∈ C
ve,end ∈ C

such that

 Φe : (−1, 1)→ e homeomorphism
Φe(−1) = ve,start
Φe(1) = ve,end

And for all (ε, g, k)-face f ∈ C,

there exist

Φf : Fε,g,k → X continuous
a partition of [1..k] into If,1, If,2 and If,3

∀i ∈ If,1,

 Nf,i ∈ N, Nf,i ≥ 1
∀j ∈ [1..Nf,i], vf,i,j vertex of C
∀j ∈ [1..Nf,i], ef,i,j open edge of C

∀i ∈ If,2,
{
vf,i vertex of C

∀i ∈ If,3,
{
Nf,i ∈ N, Nf,i ≥ 1
ef,i closed edge of C

such that

Φf : int(Fε,g,k)→ f homeomorphism
∀i ∈ If,1, ∀j ∈ [1..Nf,i],{

Φf (vf,i,j) = vf,i,j
Φf : ef,i,j → ef,i,j homeomorphism

∀i ∈ If,2, Φf (Bf,i) = vi,f
∀i ∈ If,3, Φf : Bf,i → ef,i wraps Nf,i times around ef,i

where

Bf,i is the i-th boundary component of Fε,g,k
and {. . . ,vf,i,j , . . . , ef,i,j , . . . } is a
decomposition of Bf,i into Nf,i vertices and
Nf,i open edges, ordered clockwise or counter-clockwise.

(14)

This is, for the case of the dimension 2, an equivalent formulation of the cell complex constraints described in
Section 4.1. It is much less compact and does not scale in dimension, but exhaustively describes the different
types of cells involved and how they can be glued together. Examples of valid PCS complex are given Figure 23
and 24.

18

(a) (b) (c) (d) (e)

Mf

Bf,i

M′f
B′f,i

Case 1. Case 2. Case 1. Case 2.

Figure 25: Steps in the construction of the mixed triangulation-quadrangulation of Mf , from the proof of
Proposition 7.

4.5 Equivalence between PCS-decomposable spaces and 2-triangulable spaces

In this section, we show that the class of topological spaces that can be decomposed as a PCS complex is the
same as the class of topological spaces that admits a 2-triangulation. This shows that PCS complexes are able
to represent any “reasonable” two-dimensional object.

Proposition 6. A topological space that admits a 2-triangulation can be decomposed as a PCS complex.

Proof. This proposition comes directly from the observation that a 2-triangulation of a space X is in fact
also a valid PCS decomposition. Indeed, a 0-simplex is a PCS vertex, a 1-simplex is a PCS open edge, and
a 2-simplex is a PCS face whose characteristic manifold is F�,0,1 (the sphere with one hole), with its unique
boundary component Bf,1 decomposed into three vertices and three open edges, each mapped homeomorphically
to vertices and open edges.

Proposition 7. A topological space that can be decomposed as a PCS complex admits a 2-triangulation.

Proof. To prove this statement, we provide an explicit construction of the triangulation. Let K = (X, C) be
a PCS complex. Without loss of generality, we assume that C does not contain any closed edge. Indeed, any
valid PCS decomposition (X, C) can be preliminary turned into a valid PCS decomposition (X, C′) that does
not contain closed edges, by partitioning every closed edge of C into an open edge and a vertex. Now, let us
start the construction of the triangulation:

• The vertices in C are the 0-simplices of the triangulation.

• The open edges in C are all split into three 1-simplices and two 0-simplices.

These two first steps have constructed a valid 1-triangulation of the 1-skeleton of X. Splitting each edge in
three is necessary to ensure that each 1-simplex has a different start and end 0-simplex, and that any given pair
of 0-simplices is connected by at most one 1-simplex. Now, let us triangulate the faces:

• Let f be a face in C.

• Let Mf be the characteristic manifold of f , Φf be the characteristic map, and Bf,i ∼= S1 be the boundary
components of Mf .

• Let M′f be a compact submanifold of Mf obtained by “offsetting by a small amount” the holes of Mf (cf.
Figure 25(b)). We call B′f,i the boundary components of M′f .

• For each boundary component Bf,i mapped by Φf to vertices and open edges (Case 1., i.e. when i ∈ If,1
from the characterization Eq. 14), we 1-triangulate Bf,i by using the pre-image by Φf of the previously
constructed 1-triangulation of ∂f (cf. Figure 25(c), left hole). This 1-triangulation has 3Nf,i 0-simplices,
and the same number of 1-simplices.

• For each boundary component Bf,i mapped by Φf to a single vertex (Case 2.), we arbitrarily 1-triangulate
Bf,i using three 0-simplices, and three 1-simplices (cf. Figure 25(c), right hole). We note that Case 3. can
be ignored since C does not contain any closed edge.

19

• For each boundary component Bf,i in Case 1., we arbitrarily 1-triangulate B′f,i using 3Nf,i 0-simplices
and 3Nf,i 1-simplices. Then, we 2-triangulate the topological cyclinder between Bf,i and B′f,i using the
pattern illustrated in Figure 25(d), left hole.

• For each boundary component Bf,i in Case 2., we arbitrarily 1-triangulate B′f,i using three 0-simplices
and three 1-simplices. Then, we quadrangulate the topological cylinder between Bf,i and B′f,i using the
pattern illustrated in Figure 25(d), right hole.

• Finally, we 2-triangulate M′f by preserving the existing 1-triangulation of its boundary, that we know is
possible since M′f is a compact 2-manifold (cf. Figure 25(e)).

• At this stage of the construction, we have obtained a mixed triangulation-quadrangulation T of Mf . To
conclude the construction, we define the triangulation of f to be the image of T by Φf .

The reader can verify that the quads of Mf become triangles of f since in Case 2., Bf,i shrinks to a single
vertex. Also, due the homeomorphism properties of Φf , the triangles stay triangles, no 1-simplex of f has its
start 0-simplex equal to its end 0-simplex, and no pair of 0-simplices are connected by 2 or more 1-simplices
(this is guaranteed by the specific triangle pattern chosen around Bf,i for Case 1.). Therefore, by performing
this process for all faces, we obtain a valid 2-triangulation of X.

5 Abstract PCS complex

In this section, we define the notion of abstract PCS complex, independently from the notion of PCS complex. It
is a purely combinatorial and finite structure, similar to the concept of polygon presentation. It is equivalent to
the VGC [Dalstein et al., 2014] to which we add the information of orientability and genus of faces. Then, from
an abstract PCS complex P, we define a topological space |P|, which we call the geometric realization of P, and
we show that it is a PCS complex. Finally, we show that for every PCS complex K, there exists an abstract PCS
complex P such that |P| is homeomorphic to K. This means that PCS complexes can unambiguously (up to
homeomorphism), be described purely combinatorially as abstract PCS complexes. Abstract PCS complexes are
very similar to vector graphics complexes, but we adopt here a different formalism more adapted for subsequent
analysis.

5.1 Definition

An
terminologyabstract PCS complex, is a tuple P = (C,dim, ε, g, ∂̂) such that:

• C is a finite set. Its elements are called abstract cells.

• dim : C → {0, 1, 2} is a function specifying the dimension of an abstract cell. We use this function to
define the sets of abstract vertices, abstract edges, and abstract faces by:

V = {c ∈ C | dim(c) = 0} (15)

E = {c ∈ C | dim(c) = 1} (16)

F = {c ∈ C | dim(c) = 2} (17)

For conciseness, we omit the term “abstract” when it is clear from the context that we are referring to an
abstract cell of an abstract PCS complex, as opposed to a cell of a PCS complex.

• ε : F → {�, 6�} is a function specifying the orientability of a face.

• g : F → N is a function specifying the genus of a face, satisfying the following constraint to ensure that
non-orientable faces have strictly positive genuses:

∀f ∈ F, (ε(f) =6�) ⇒ (g(f) ≥ 1) (18)

20

• ∂̂ : C → V̂ ∪ Ê ∪ F̂ is a function specifying the semantic boundary of a cell, satisfying:

∀v ∈ V, ∂̂v ∈ V̂ (19)

∀e ∈ E, ∂̂e ∈ Ê (20)

∀f ∈ F, ∂̂f ∈ F̂ (21)

where the sets V̂, Ê, and F̂ are defined in the remaining of this section.

A vertex semantic boundary is defined as the empty set. Hence, the set of all possible vertex semantic
boundaries is

V̂ = {∅}. (22)

An edge semantic boundary is defined as either the empty set or an ordered pair of edges (vstart, vend) ∈ V ×V .
Hence, the set of all possible edge semantic boundaries is

Ê = {∅} ∪ (V × V). (23)

∂̂e specifies not only the vertices in the boundary of e, but also, when ∂̂e 6= ∅, it specifies a natural orientation
of the edge, from vstart to vend. An edge such that ∂̂e = ∅ is called a closed edge , otherwise it is called an
open edge . We denote by E◦ the set of closed edges and by E| the set of open edges:

E◦ = {e ∈ E | ∂̂e = ∅} (24)

E| = {e ∈ E | ∂̂e ∈ V × V } (25)

A halfedge, or oriented edge, is defined by an edge and a chosen orientation, i.e. a pair h = (e, β) ∈ E×{>,⊥}.
If β = >, then the edge is considered in its natural orientation, otherwise it is considered in the opposite
orientation. The set of all halfedges is denoted

H = E × {>,⊥}. (26)

A halfedge h = (e, β) is called a closed halfedge if e is a closed edge, and an open halfedge otherwise. We
denote by H◦ the set of closed halfedges, and by H| the set of open halfedges and:

H◦ = E◦ × {>,⊥} (27)

H| = E| × {>,⊥} (28)

We define the functions
start : H| → V

(e,>) 7→ vstart
(e,⊥) 7→ vend

(29)

and
end : H| → V

(e,>) 7→ vend
(e,⊥) 7→ vstart

(30)

where
(vstart, vend) = ∂̂e. (31)

We denote the set of stricly positive integers as N+ = N\{0}. A cycle γ is defined as either:

1. a non-empty sequence of open halfedges (hj)j∈[1..N] ∈ H+
| such that

∀j ∈ [1..N], end(hj) = start(h(j+1) mod N) (32)

where H+
| = ∪N≥1HN

| , and j mod N refers to the integer j′ ∈ [1..N] such that j ≡ j′ (mod N), or

2. a vertex v ∈ V , or

3. a pair (h,N) ∈ H◦ × N+ representing a closed halfedge repeated N times.

21

In the first case, the cycle γ is called a non-simple cycle , in the second case, it is called a Steiner cycle ,
and in the third case, it is called a simple cycle . Formally, the sets of all possible non-simple cycles, Steiner
cycles, and simple cycles are respectively defined by

Γ+ = {(hj) ∈ H+
| | (32)} (33)

Γ• = V (34)

Γ◦ = H◦ × N+ (35)

and the set of all possible cycles is defined by

Γ = Γ+ ∪ Γ• ∪ Γ◦. (36)

Finally, a face semantic boundary is defined as a (possibly empty) sequence of cycles. Hence, with Γ∗ =
∪N≥0ΓN , the set of all possible face semantic boundaries is defined by

F̂ = Γ∗. (37)

5.2 Convenient notations

Vertex We use the notation v to refer to a vertex.

Edge We use the notation e to refer to an edge that can be either open or closed.

Open edge We use the notation e| to refer to an open edge, or simply e when it is clear from the context
that the edge is open. To conveniently refer to or define an open edge e together with its semantic boundary
∂̂e, we use the following abuse of notation:

e = (vstart, vend) (38)

We conveniently refer to these objects by vstart(e) and vend(e).

Closed edge We use the notation e◦ to refer to a closed edge, or simply e when it is clear from the context
that the edge is closed.

Halfedge We use the notation h = (e, β), with β ∈ {>,⊥}, to refer to or define a halfedge that can be either
open or closed. We conveniently use the notation e(h) and β(h) to refer to the components of the halfedge. We
use the notation h◦ to refer specifically to a closed halfedge, and the notation h| to refer specifically to an open
halfedge. Finally, we sometimes use the abuse of notation vstart(h) = start(h) and vend(h) = end(h).

Cycle We use the notation γ to refer to a cycle that can be Steiner, simple or non-simple.

Steiner cycle We use the notation γ• to refer to a Steiner cycle, or simply γ when it is clear from the context
that we refer to a Steiner cycle. We use the notation v(γ•) to refer to the vertex that defines it, and the following
notation to refer to or define a Steiner cycle together with its vertex v:

γ• = [v] (39)

Simple cycle We use the notation γ◦ to refer to a simple cycle, or simply γ when it is clear from the context
that we refer to a Steiner cycle. We use the notations h◦(γ◦) and N(γ◦) to refer to the closed halfedge and
integer that define it. We also use the convenient notations e◦(γ◦) = e(h◦(γ◦)) and β(γ◦) = β(h◦(γ◦)). Finally,
we use the following notation to refer to or define a Steiner cycle together with its defining components:

γ◦ = [h◦N] = [(e◦, β)N] (40)

22

Non-simple cycle We use the notation γ+ to refer to a non-simple cycle, or simply γ when it is clear from
the context that we refer to a non-simple cycle. We use the following notation to refer to or define a non-simple
cycle together with its defining open halfedges:

γ+ = [h1, . . . , hN] = [(e1, β1), . . . , (eN , βN)] (41)

We conveniently refer to these objects by N(γ), hj(γ), ej(γ) and βj(γ), where j ∈ N is considered modulo N
(e.g., h0(γ) is well-defined and refers to hN). We use the notation vi(γ) = vend(hi(γ)). In particular, we have
v0(γ) = vN (γ), and to conveniently visualize all the cells involved in a non-simple cycle, we use the notation:

γ+ = [•
v0

(e1, β1) •
v1
· · · •

vN−1

(eN , βN) •
vN

] (42)

Face We use the notation f to refer to a face. To conveniently refer to or define a face f together with its
semantic boundary ∂̂f , we use the following abuse of notation:

f = (ε, g, [γ1, . . . , γk]) (43)

or simply
f = [γ1, . . . , γk] (44)

when ε and g are irrelevant or clear from context. We conveniently refer to these objects by ε(f), g(f), k(f),
and γi(f). It is possible that f = [], in which case f is a face without boundary (we do not use a special
notation for faces without boundary).

5.3 Geometric realization

In this section, we define for each abstract PCS complex P a PCS complex |P| that we call the geometric

realization of P. Let P = (C,dim, ε, g, ∂̂) be an abstract PCS complex. First, for each abstract cell c ∈ C, let
Mc be the compact manifold defined by:

• If c ∈ V , then Mc = V.

• If c ∈ E◦, then Mc = E◦
• If c ∈ E|, then Mc = E|
• If c ∈ F , then Mc = Fε(c),g(c),k(c).

Then, let Y be the topological space defined by the topological disjoint union of all Mc, i.e. Y = qc∈CMc.
By “topological disjoint union”, we mean that even though the characteristic manifolds of different cells can
be equal (e.g., Mv = Mv′ = V = {0}), they are “duplicated” to appear as many times in Y . Formally, this is
achieved by pairing the objects to unite with an identifier (e.g., MvqMv′ = VqV = {(x, 1) | x ∈ V}∪{(x, 2) | x ∈
V} = {(0, 1), (0, 2)}), and is well covered in textbooks on algebraic topology. In our case, the abstract cells
themselves can take the role of identifiers, therefore we have

M′c ={(x, c) | x ∈Mc} (45)

Y =
⋃
c∈C

M′c (46)

The last step is to define, for each cell c ∈ C, a map Φc : M′c → Y that we call a quotient map. We will
use these maps to define the topological space X as the quotient space X = Y/ ∼, where ∼ is the smallest
equivalence relation containing x ∼ Φc(x) for all c ∈ C and all x ∈ M′c. This means that if Φc(x) = y in Y ,
then x and y become a single element in X. In other words, every point x ∈ M′c is glued to its image by Φc.
We now define these maps. Let c ∈ C be an abstract cell.

• If c ∈ V , we recall that Mc = V = {0}. Therefore, M′c has a unique element {(0, c)}, and we define:

Φc : M′c → Y
(0, c) 7→ (0, c)

(47)

23

• If c ∈ E◦, we recall that Mc = S1. With θ ∈ [0, 2π) referring to the usual parameterization of S1, we
define:

Φc : M′c → Y
∀θ ∈ [0, 2π), (θ, c) 7→ (θ, c)

(48)

• If c ∈ E| then there exist abstract vertices vstart and vend such that ∂̂c = (vstart, vend). Also, we recall that
Mc = [−1, 1]. We define:

Φc : M′c → Y
(−1, c) 7→ (0, vstart)

∀x ∈ (−1, 1), (x, c) 7→ (x, c)
(1, c) 7→ (0, vend)

(49)

• If c ∈ F , then there exist g,ε, and γi such that ∂̂c = (g, ε, [γ1, . . . , γk]), and we have Mc = Fg,ε,k.
Therefore, M′c has k boundary components B′c,i all homeomorphic to S1, that we parameterize by (θ, c, i)
with θ ∈ [0, 2π). This means that by (θ, c, i), we refer to a point (x, c) ∈ B′c,i ⊂ M′c ⊂ Y . We define the
map Φc : M′c → Y by:

– ∀x ∈ int(Mf) :
(x, c) 7→ (x, c) (50)

– ∀i ∈ [1..k] :

∗ If γi = [v] :
∀θ ∈ [0, 2π), (θ, c, i) 7→ (0, v) (51)

∗ If γ◦i = [(e◦,>)N] :
∀θ ∈ [0, 2π), (θ, c, i) 7→ (Nθ, e◦) (52)

∗ If γ◦i = [(e◦,⊥)N] :
∀θ ∈ [0, 2π), (θ, c, i) 7→ (−Nθ, e◦) (53)

∗ If γi = [•
v0

(e1, β1) •
v1
· · · •

vN−1

(eN , βN) •
vN

], then ∀j ∈ [1..N] :

If βi = > : ∀θ ∈
[

2(j − 1)π

N
,

2jπ

N

)
, (θ, c, i) 7→ (2u− 1, ej) (54)

If βi = ⊥ : ∀θ ∈
[

2(j − 1)π

N
,

2jπ

N

)
, (θ, c, i) 7→ (1− 2u, ej) (55)

Where u is the value in [0, 1) such that θ = 2(j−1+u)π
N , i.e.:

u = 1− j +
Nθ

2π
(56)

As announced, we conclude the construction by defining |P| = (X, C), where X = Y/ ∼, and C = {|c| : c ∈ C},
where |c| refers to the set of equivalence classes of x ∈ X corresponding to the points y ∈ int(M′c) ⊂ Y . The
cells |c| in C are actual topological cells, unlike the abstract cells c in C which are only symbols/identifiers. The
interested reader can verify that |P| is indeed a PCS complex. This is achieved by using the characterization
of PCS complex from Equation 14. The existence of all required objects comes from the explicit construction
of |P|.

24

5.4 Presentation scheme

Let K = (X, C) be a PCS complex. In a largely symmetric fashion of the previous section, starting from the
characterization in Equation 14, we can define an abstract PCS complex KA, called the presentation scheme
of K, such that K and |KA| are homeomorphic. By “PCS complex homeomorphism”, we mean that not only
there is a homeomorphism between the two topological spaces, but also that this homeomorphism maps cells of
K to cells of |KA|. We detail here how to construct KA = (C, dim, ε, g, ∂̂) from K:

• Let Nc be the number of cells in C. We define C = [1..Nc]. Since C and C have the same cardinal Nc,
there exists a bijection σ from cells in C to abstract cells in C. For each cell c ∈ C, we use the notation
cA ∈ C to refer to the abstract cell σ(c) corresponding to the cell c ∈ C.

• For each vertex v ∈ C, we define dim vA = 0, and we define ∂̂vA = ∅.

• For each closed edge e ∈ C, we define dim eA = 1, and we define ∂̂eA = ∅.

• For each open edge e ∈ C, we define dim eA = 1. Let ve,start ∈ C and ve,end ∈ C be the vertices provided

by Eq. 14. We define ∂̂eA = (vAe,start, v
A
e,end).

• For each face f ∈ C, we define dim fA = 2. Let Fε,g,k be the characteristic manifold of f . We define
ε(fA) = ε and g(fA) = g. Let If,1, If,2, and If,3 be the partition of [1..k] from Eq. 14. We define

∂̂fA = [γ1, . . . , γk], where the γi are defined by:

– If i ∈ If,1, then let ef,i,j be the Nf,i open edges from Eq. 14. Let θ ∈ [0, 2π) be a parameterization
of Bf,i such that the ef,i,j are ordered increasingly. If f is orientable, the chosen orientation must
be consistent across all the Bf,i (i.e. all clockwise or all counter-clockwise). Let x ∈ (−1, 1) be the
parameterization of ef,i,j provided by Φef,i,j . Using these parameterizations, then for all j ∈ [1..Nf,i],
Φf restricted to ef,i,j is a bijective function from a subinterval of [0, 2π) to (−1, 1). Thus, it is either
strictly increasing or strictly decreasing. If it is strictly increasing, we define βj = >, otherwise we
define βj = ⊥. Finally, we define γi = [(eAf,i,1, β1), . . . , (eAf,i,N , βN)] (non-simple cycle).

– If i ∈ If,2, then let vf,i be the vertex from Eq. 14. We define γi = [vAf,i] (Steiner cycle).

– If i ∈ If,3, then let Nf,i and ef,i be the integer and the closed edge from Eq. 14. Let θ ∈ [0, 2π) be
the parameterization of Bf,i already defined above, and let θ ∈ [0, 2π) be the parameterization of ef,i
provided by Φef,i . Using these parameterizations, if Φf restricted to Bf,i is strictly increasing, then
we define β = >, otherwise we define β = ⊥. Finally, we define γi = [(eAf,i, β)Nf,i] (simple cycle).

Due to the fact that the construction of KA from K is symmetric to the construction of |P| from P, the reader
can verify that |KA| and K are homeomorphic. In other words, an abstract PCS complex is a combinatorial
structure that describes a PCS complex up to homeomorphism, and conversely every PCS complex admits an
abstract PCS complex that describes it.

6 Algebraic operations on halfedges, paths and cycles

In order to describe more conveniently the topological operators on abstract PCS complexes (cf. Section 7),
we first introduce the notion of paths, and a few basic algebraic operations on halfedges, paths and cycles,
which are: flipping a halfedge, a path, or a cycle; converting an open halfedge to a path and a path to a cycle;
concatenating paths to create a longer path; rotating a non-simple cycle; and extracting a subpath from a path
or a non-simple cycle.

6.1 Paths

Given an abstract PCS complex P, a path is defined as a triplet π = (vstart, (hj)j∈[0..N], vend) ∈ Π = V ×H∗| ×V
satisfying the following constraints:

25

• if N = 0 (i.e., the sequence (hj) is empty), then vstart = vend

• if N > 0 (i.e., the sequence (hj) is not empty), then

– vstart = start(h1)

– ∀j ∈ [1..N − 1], end(hj) = start(h(j+1))

– end(hN) = vend

Intuitively, a path starts at a given vertex vstart, then travels alongN ≥ 0 edges ei with a given orientation βi, and
finally ends its course at a vertex vend. If N = 0, we conveniently use the notation π = [v] instead of π = (v, [], v).
If N > 0, we conveniently use the notation π = [h1, . . . , hN] instead of π = (vstart, [h1, . . . , hN], vend), since the
start and end vertices can be inferred from the halfedges. The integer N ∈ N is called the length of the path.
While the notion of path shares similarities with the notion of cycle (e.g., can be reduced to a single vertex),
we note that the concept of “simple path” does not exist: a path necessarily starts and ends at given vertices
(possibly equal), therefore it cannot contain closed edges. To better emphasize the differences between paths
and cycles, we use the following terminology: if N = 0, we refer to the path as a trivial path (rather than a
“Steiner path”); and if N > 0, we refer to the path as a non-trivial path (rather than a “non-simple path”).

6.2 Flipping halfedges, paths and cycles

Given a halfedge h = (e, β), we define its flipped halfedge as:

h = (e, β), where β =

{
⊥ if β = >
> if β = ⊥

(57)

Given a path π = (vstart, [h1, . . . , hN], vend), we define its flipped path as:

π = (vend, [hN , . . . , h1], vstart) (58)

Given a cycle γ, we define its flipped cycle as:

γ =

[v] if γ = [v] is a Steiner cycle

[h◦
N

] if γ = [h◦N] is a simple cycle

[hN , . . . , h1] if γ = [h1, . . . , hN] is a non-simple cycle

(59)

6.3 Converting open halfedges to paths and paths to cycles

An open halfedge h can always be interpreted as a path π of length N(π) = 1, using the following conversion:

H| → Π
h 7→ [h] = (vstart(h), [h], vend(h))

(60)

For conciseness, we will often omit the brackets and simply write h instead of [h] when it is clear from the
context that we interpret h as a path.

Similarly, a path satisfying vstart = vend can always be interpreted as a cycle (more specifically, a Steiner cycle
if N = 0 and a non-simple cycle if N > 0), using the following conversion:

{π ∈ Π | vstart = vend} → Γ

π 7→ [π) =

{
[vstart] if N = 0

[h1, . . . , hN] if N > 0

(61)

For conciseness, we will often omit the brackets and parentheses and simply write π instead of [π) when it is
clear from the context that we interpret π as a cycle.

26

6.4 Concatenating paths

Given two paths π = (vstart, [h1, . . . , hN], vend) and π′ = (v′start, [h
′
1, . . . , h

′
N ′], v

′
end) satisfying vend = v′start, we

define the concatenation of π with π′ by:

[π, π′] = (vstart, [h1, . . . , hN , h
′
1, . . . , h

′
N ′], v

′
end) (62)

Since this operation is associative (i.e., [[π, π′], π′′] = [π, [π′, π′′]]), we conveniently omit the extra brackets and
simply write [π1, . . . , πm] when concatenating more than two paths together. Also, since open halfedges can
be interpreted as paths of length one, we extend the notation to concatenate paths and halfedges, leading to
expressions such as [π1, (e,>), π2, (e,⊥)]. If vstart(π1) = vstart(e), this expression can subsequently be implicitly
interpreted as a cycle, so we would simply write γ = [π1, (e,>), π2, (e,⊥)] instead of the painful to read formal
expression γ = [[[[π1, [(e,>)]], π2], [(e,⊥)]]).

In pseudocode, we will often use the wording “Append h to π”, which means “π ← [π, h]”. Finally, we note that
as per the definitions, concatenating with a trivial path is a no-operation. For instance, if π2 is trivial, then
[π1, π2, π3] = [π1, π3]. In other words, all trivial paths are neutral elements for the concatenation operation.

6.5 Rotating non-simple cycles

Intuitively, we want a cycle to represent a loop travelling along edges with a given orientation but without a
given starting point. However, for clarity of the exposition, we have formally defined a non-simple cycle as a
sequence of halfedges, which means that even though we do not “need it”, a “first halfedge” has to be arbitrarily
chosen, specifying somehow an unwanted starting point. A negative consequence of this superfluous information
is that if h1 6= h2, then the two cycles γ1 = [h1, h2] and γ2 = [h2, h1] are two different mathematical objects
(i.e., γ1 6= γ2), even though they intuitively “represent the same cycle”. To capture this intuitive notion, we
define the following equivalence relation between non-simple cycles:

γ+1 ∼ γ
+
2 ⇔ ∃d ∈ N, ∀j ∈ [1..N], hj(γ

+
1) = hj−d(γ

+
2) (63)

In other words, two non-simple cycles γ+1 and γ+2 are equivalent if and only if γ+2 can be obtained from γ+1 by
choosing a different “starting point”, formally done via an operation called a rotation, defined by:

Rotd : Γ+ → Γ+

γ+ = [h1, . . . , hN] 7→ Rotd(γ
+) = [h(1+d) mod N , . . . , h(N+d) mod N]

(64)

Using this operation, the equivalence relation can be rewritten as:

γ+1 ∼ γ
+
2 ⇔ ∃d ∈ N, γ+2 = Rotd(γ

+
1) (65)

We extend the equivalence relation to all types of cycles by defining:

• Two Steiner cycles γ•1 and γ•2 are equivalent iff v(γ•1) = v(γ•2).

• Two simple cycles γ◦1 and γ◦2 are equivalent iff e◦(γ◦1) = e◦(γ◦2), β(γ◦1) = β(γ◦2), and N(γ◦1) = N(γ◦2)

• Two cycles γ1 and γ2 of different nature (i.e., non-simple, Steiner or simple) are not equivalent.

We note that while a more carefully crafted definition of cycles would avoid the need for such an equivalence
relation, we would lose a lot of clarity and the convenience of referring to a halfedge via its index, reason why
we did not go that way. In addition, this simpler definition is closer to our actual implementation and hence
has a practical value. Finally, we also note that using a circular linked list instead of an indexed sequence does
not avoid the theoretical and practical need for an equivalence relation, since the circular linked list must still
arbitrarily point to one element of the list, and hence testing for “logical equality” between two circular linked
lists also requires to take into account rotations, in this case simply achieved by pointing to a different element
in the list.

27

6.6 Extracting subpaths from paths and non-simple cycles

Given a path π = (vstart, [h1, . . . , hN], vend) and two indices jstart and jend satisfying 0 ≤ jstart ≤ jend ≤ N , we
define the subpath π′ = π[jstart; jend] by:

π[jstart; jend] =

[vend] if jend = 0

[vend(hjend)] if jend > 0 and jstart = jend

[hjstart+1, . . . , hjend] otherwise (i.e., if jstart < jend)

(66)

Given a non-simple cycle γ = [h1, . . . , hN] and two indices jstart and jend, we define the subpath π′ =
γ[jstart; jend] by:

γ[jstart; jend] =

[vend(hjend)] if jstart = jend

[hjstart+1, . . . , hjend] if jstart + 1 ≤ jend
[hjstart+1, . . . , hN , h1, . . . , hjend] if jstart + 1 > jend

(67)

where j = j mod N . The above formal definition can be implemented with the following pseudocode:

SubPath(γ ∈ Γ+, jstart ∈ N, jend ∈ N)

1 π ← [vjstart(γ)]
2 j ← jstart
3 while j 6≡ jend (mod N(γ)) do
4 j ← j + 1
5 Append hj(γ) to π

6 return π

7 Topological operators on abstract PCS complexes

In this section, we present topological operators that transform a valid abstract PCS complex into another valid
abstract PCS complex, given a relevant input. These operators apply to the VGC as well: just ignore all genuses
and orientabilities. This is possible since, except in two exceptional cases, genuses and orientabilities are never
used to determine what actions to take: they are only used to compute other genuses and orientabilities. The
two exceptional cases are CutNonOrientableFaceAtNonDisconnectingOrientingClosedEdge() and CutNonOri-
entableFaceAtNonDisconnectingOrientingOpenEdge(). In these cases, the “if” branching can be seen as two
alternatives that are both valid. Since the input always include a valid abstract PCS complex, and that the
output is always a valid abstract PCS complex, we do not mention them, and instead we assume that we are
working on a globally accessible abstract PCS complex P = (C,dim, ε, g, ∂̂) that is modified in-place by the
topological operator.

7.1 Cell creation

Creating a cell means adding to C a new symbol c that is not already contained in C, and defining the value
of dim(c) and ∂̂c for this new symbol. If dim(c) = 2, then we need to define ε(c) and g(c) as well. For vertices
and edges, the corresponding topological operators are:

CreateVertex()

1 Let v 6∈ C . Memory allocation in real-life code, cf. next paragraph
2 dim(v) ← 0

3 ∂̂v ← ∅
4 Insert v in C
5 return v

28

CreateClosedEdge()

1 Let e◦ 6∈ C
2 dim(e◦) ← 1

3 ∂̂e◦ ← ∅
4 Insert e◦ in C
5 return e◦

CreateOpenEdge(vstart ∈ V , vend ∈ V)

1 Let e 6∈ C
2 dim(e) ← 1

3 ∂̂e← (vstart, vend)
4 Insert e in C
5 return e

In real-life code, “finding a new symbol not already in C” is typically a memory allocation. For instance, in
C++, if C is defined as set<Cell *> C;, then “Let c 6∈ C” translates to Cell * c = new Cell;. Also, defining
the value dim(c) may translate to “do nothing” when implemented with an object-oriented language where the
type of c already tells you if it’s a vertex, an edge, or a face. We clarify this with a C++ snippet:

1 class Cell

2 {

3 virtual int dimension () const =0;

4 virtual set <Cell*> boundary () const =0;

5 };

6 class Vertex: public Cell

7 {

8 int dimension () const { return 0; }

9 set <Cell*> boundary () const { return set <Cell*>; }

10 };

11 class Edge: public Cell

12 {

13 Vertex * start , end; // Both NULL if closed edge

14

15 Edge() : start(NULL), end(NULL) {} // Create closed edge

16 Edge(Vertex * vs, Vertex * ve) : start(vs), end(ve) {} // Create open edge

17

18 int dimension () const { return 1; }

19 set <Cell*> boundary () const

20 {

21 set <Cell*> res;

22 if(start == NULL) // Closed edge

23 {

24 return res;

25 }

26 else // Open edge

27 {

28 res.insert(start);

29 res.insert(end);

30 return res;

31 }

32 }

33 };

And then the method CreateClosedEdge() would simply be

1 Edge * createClosedEdge ()

2 {

3 Edge * e = new Edge();

4 C.insert(e);

5 return e;

6 }

29

Finally, the most atomic way to create a face is in several steps: one step to create a face without boundary,
and then one step per cycle to add. Cycles can also be removed afterwards:

CreateFace(εf ∈ {�, 6�}, gf ∈ N)

1 Let f 6∈ C
2 dim(f) ← 2

3 ∂̂f ← [] . Empty sequence of cycles
4 ε(f)← εf
5 g(f)← gf
6 Insert f in C
7 return f

AddSteinerCycleToFace(f ∈ F , v ∈ V)

1 Append γ• = [v] to ∂̂f

AddSimpleCycleToFace(f ∈ F , e◦ ∈ E◦, β ∈ {>,⊥}, N ∈ N)

1 Append γ◦ = [(e◦, β)N] to ∂̂f

AddNonSimpleCycleToFace(f ∈ F , γ ∈ Γ+)

1 Append γ to ∂̂f

AddCycleToFace(f ∈ F , γ ∈ Γ)

1 Append γ to ∂̂f

RemoveCyclesFromFace(f ∈ F , I ⊂ N)

1 ∆← []
2 for all i ∈ [1..k(f)], i 6∈ I do
3 Append γi(f) to ∆

4 ∂̂f ← ∆

RemoveCycleFromFace(f ∈ F , i ∈ N)

1 RemoveCyclesFromFace(f ,{i})

7.2 Cell deletion

In the general case, deleting a cell by simply removing it from C would result in the general case in an invalid
abstract PCS complex. For instance, if C = {v1, v2, e} with ∂̂e = (v1, v2), them removing v1 would result

in C = {v2, e} with ∂̂e = (v1, v2), which is clearly an invalid abstract PCS complex since we must have
vstart(e) ∈ V which is not anymore the case. More generally, removing a cell c from C is valid if and only if
we have star(c) = ∅. Hence, one possible way to define “deletion” is to remove altogether of c and star(c),
operation that we call “hard delete”, and that is safely achieved by the following recursive method:

HardDelete(c ∈ C)

1 while ∃c′ ∈ star(c) do
2 HardDelete(c′)

3 Remove c from C . In real-life code, remove from set, then release memory

30

No

UnCut?

Yes!

UnCut?

No

UnCut?

Yes

UnCut?

No

UnCut?

No

UnCut?

Yes!

UnCut?

Yes

UnCut?

Yes

UnCut?

Yes

UnCut?

No

UnCut?

No again

UnCut?

No

UnCut?

No

UnCut?

No

UnCut?

Thus:
HardDelete

Figure 26: Three scenarios using SmartDelete().

But there is a less destructive way to remove c from C: perform an atomic simplification at c, as defined in
Section 9 and illustrated in Figure 34. This operation is equivalent to the UnCut() topological operator defined
in Section 7.6. However, not all cells are candidate for atomic simplification. So we may think of a method
“if can be atomically simplified, atomically simplify; otherwise, hard delete”. But this approach is still too
destructive: in the first two scenarios in Figure 26, it would be equivalent to hard delete, while we can see that
a less destructive approach exists. This approach is “if can be simplified, simplify; otherwise, hard delete”,
where simplifying a cell c corresponds to recursively simplify all its star cells first, then atomically simplify c, if
possible. This “smart delete” operation is implemented by the following topological operators:

SmartDelete(c ∈ C)

1 if c ∈ V then
2 SmartDeleteVertex(c)
3 else if c ∈ E then
4 SmartDeleteEdge(c)
5 else if c ∈ F then
6 SmartDeleteFace(c)

SmartDeleteFace(f ∈ F)

1 HardDelete(f)

SmartDeleteEdge(e ∈ E)

1 if CanUncutAtEdge(e) then
2 UnCutAtEdge(e)
3 else
4 HardDelete(e)

SmartDeleteVertex(v ∈ V)

1 if CanUncutAtVertex(v) then
2 UnCutAtVertex(v)
3 else
4 for all Edge e ∈ star(c) do
5 if CanUncutAtEdge(e) then UnCutAtEdge(e)

6 if CanUncutAtVertex(v) then
7 UnCutAtVertex(v)
8 else
9 HardDelete(v)

31

7.3 Glue

Gluing is a rather simple topological operator, both conceptually and to implement. To glue two cells c1 and
c2 of same “type”, the idea is to create a new cell c (in case some geometry is associated to the topololy, the
geometry of c would be averaging the ones of c1 and c2), then to replace every occurrence of c1 or c2 (in the
semantic boundary of other cells) by c, and delete c1 and c2 (note that because c1 or c2 do not belong anymore
to the boundary of any cell, we have star(c1) = star(c2) = ∅, thus deleting them simply means removing them
from C). Hence, to glue two vertices v1 or v2, you should replace every occurrence of v1 or v2 (as a start vertex,
end vertex, or Steiner cycle) by the new “glued” vertex v.

GlueVertices(v1 ∈ V , v2 ∈ V)

Require: v1 6= v2
1 v ← CreateVertex()
2 for all open edge e ∈ star(v1) ∪ star(v2) do
3 if vstart(e) = v1 OR vstart(e) = v2 then
4 vstart(e)← v

5 if vend(e) = v1 OR vend(e) = v2 then
6 vend(e)← v

7 for all face f ∈ star(v1) ∪ star(v2) do

8 for all Steiner cycle γ•i ∈ ∂̂f do
9 if γ•i = [v1] OR γ•i = [v2] then

10 γ•i ← [v]

11 HardDelete(v1)
12 HardDelete(v2)
13 return v

Gluing two edges is ambiguous: one needs to decide on a chosen relative orientation first. If there is geometry
available, simple heuristics should be enough (for instance using the sign of a dot product). Once orientation is
decided, we are left to glue two halfedges (e1, β1) and (e2, β2). To achieve this, we first glue their start vertices
and end vertices together (if any), then we create a new edge e, and replace every occurrence of (e1,>), (e1,⊥),
(e2,>), or (e2,⊥) by either (e,>) or (e,⊥).

GlueClosedHalfedges((e◦1, β1) ∈ H◦, (e◦2, β2) ∈ H◦)
Require: e◦1 6= e◦2

1 e◦ ← CreateClosedEdge()
2 for all face f ∈ star(e◦1) ∪ star(e◦2) do

3 for all simple cycle γ◦i = [(e◦i , βi)
Ni] ∈ ∂̂f do

4 if e◦i = e◦1 then
5 γ◦i ← [(e◦, (βi ⇔ β1))Ni] . “β ⇔ β′” returns > if β = β′, ⊥ otherwise
6 else if e◦i = e◦2 then
7 γ◦i ← [(e◦, (βi ⇔ β2))Ni]

8 HardDelete(e◦1)
9 HardDelete(e◦2)

10 return e◦

32

GlueOpenHalfedges(h1 = (e1, β1) ∈ H|, h2 = (e2, β2) ∈ H|)

Require: e1 6= e2
1 if vstart(h1) = vstart(h2) then
2 vstart ← vstart(h1)
3 else
4 vstart ← GlueVertices(vstart(h1),vstart(h2))

5 if vend(h1) = vend(h2) then
6 vend ← vend(h1)
7 else
8 vend ← GlueVertices(vend(h1),vend(h2))

9 e← CreateOpenEdge(vstart,vend)
10 for all face f ∈ star(e1) ∪ star(e2) do

11 for all non-simple cycle γi = [h1, . . . , hNi
] ∈ ∂̂f do

12 for all halfedge hj = (ej , βj) ∈ γi do
13 if ej = e1 then
14 hj ← (e, (βj ⇔ β1))
15 else if ej = e2 then
16 hj ← (e, (βj ⇔ β2))

17 HardDelete(e1)
18 HardDelete(e2)
19 return e

7.4 UnGlue

Informally, unglue is the “reverse” topological operation of glue. However, this is not always completely true, as
creating a vertex shared by three edges requires two glue operations, that can be reversed with a single unglue.
We illustrate this with the few examples below:{

v1
v2

}
Glue(v1,v2)−−−−−−−→

{
v
} UnGlueAt(v)−−−−−−−−→

{
v
}

v1
v2
v′1
v′2

e1 = (v1, v
′
1)

e2 = (v2, v
′
2)

Glue(v1,v2)−−−−−−−→

v
v′1
v′2

e1 = (v, v′1)
e2 = (v, v′2)

UnGlueAt(v)−−−−−−−−→

v1
v2
v′1
v′2

e1 = (v1, v
′
1)

e2 = (v2, v
′
2)

v1
v2
v3
v′1
v′2
v′3

e1 = (v1, v
′
1)

e2 = (v2, v
′
2)

e3 = (v3, v
′
3)

Glue(v1,v2)−−−−−−−→

v
v3
v′1
v′2
v′3

e1 = (v, v′1)
e2 = (v, v′2)
e3 = (v3, v

′
3)

Glue(v,v3)−−−−−−−→

v′

v′1
v′2
v′3

e1 = (v′, v′1)
e2 = (v′, v′2)
e3 = (v′, v′3)

UnGlueAt(v′)−−−−−−−−−→

v1
v2
v3
v′1
v′2
v′3

e1 = (v1, v
′
1)

e2 = (v2, v
′
2)

e3 = (v3, v
′
3)

Fundamentally, UnGlue(c) duplicates c as many times as it is “used” by cells of higher dimension, or do nothing
if star(c) = ∅. We formalize now the notion of “use”, which is similar to the vertex-use, edge-use and face-use
in the radial-edge data structure [Weiler, 1985], but not exactly identical. The fundamental difference is that
while in the radial-edge data structure, these uses are explicit objects (for instance, vertex-uses are ordered in a
cyclic doubly-linked list around the vertex they represent), they are only implicit in abstract PCS complexes.

33

Another less significant difference is that the radial-edge data structure does not support Steiner cycles and
closed edges, but we believe it could be easily extended to support them. Finally, since the radial-edge data
structure is designed to represent solid 3D objects, it also defines volumes via shells (shells are for volumes what
cycles are for surfaces) and hence defines face-uses, while we stop at the dimension 2 and hence do not need
them.

Vertex-use A vertex v can be used in three different ways:

• As a start or end vertex of an open edge e that has no incident face (i.e., ∂̂e = ∅). Such a use is called
end-vertex-use and denoted©v e,β with β ∈ {start, end}. Note that an open edge e uses twice the same
vertex if it has no incident faces and vstart(e) = vend(e). Note also that if e has incident faces, then it is
not considered as using any of its end vertices (otherwise redundant with corner-vertex-uses).

• As a Steiner cycle γ•i of a face f . Such a use is called Steiner-vertex-use
and denoted©v f,i. Note that the same vertex can be used as Steiner more
than once by the same face. For instance, consider the “pinched torus”
made of one vertex v and one face f such that ∂̂f = [[v], [v]].

• As the vertex vj(γi), junction between the consecutive halfedges hj and hj+1 in a non-simple cycle γi of
a face f . Such a use is called corner-vertex-use and denoted©v f,i,j

Open-edge-use An open edge e can only be used in one way: as an open halfedge hj in a non-simple cycle
γi of a face f . Such a use is called open-edge-use and denoted©e f,i,j .

Closed-edge-use A closed edge e◦ can only be used in one way: as a simple cycle γ◦i of a face f . If Ni (i.e.,
N(γ◦i)) is greater than one, then the closed edge e◦ is considered to be used as many times by the face. Such
a use is called closed-edge-use and denoted ©e◦ f,i,j , where j allows to distinguish repeated uses in the same
simple cycle. An example where Ni = 2 is the “cut-Möbius” illustrated in Figure 27, bottom-middle.

Once this notion of use is defined, the unglue topological operators are conceptually simple: to unglue at a
cell c, you create a new cell ck for each use ©c k of c, and replace c by ck for this specific use. After this
operation, c is not used anymore and hence we delete it. This scheme is well illustrated by the implementation
of UnGlueAtOpenEdge:

UnGlueAtOpenEdge(e ∈ E|)

1 if star(e) = ∅ then
2 Do nothing.
3 else
4 for all face f ∈ star(e) do

5 for all non-simple cycle γi ∈ ∂̂f do
6 for all halfedge hj ∈ γi do
7 if e(hj) = e then . Found open-edge-use©e f,i,j
8 e(hj)← CreateOpenEdge(vstart(e), vend(e))

9 HardDelete(e)

The case of closed edges is as easy to implement, but conceptually challenging. If Ni = 1 for all simple cycles
γ◦i using e◦, then there are no difficulties. However, the case Ni > 1 is not as straightforward. To understand
what the algorithm should do in this case, let us clarify what a “repeated closed edge” represents. Consider a
Möbius strip represented by its minimal PCS decomposition (Figure 27, bottom-left):

• one closed edge e◦1: its unique boundary edge

• one face f = (6�, 1, [[(e◦1,>)]]): non-orientable, genus-1, one simple cycle

The closed edge e◦1 is only used once by f . Indeed, if we arbitrarily choose an orientation for this closed curve,
we can see that locally, f is only “at the left side” of e◦1, or “at the right side”, but not on both sides. It
is well-known that if you take scissors and cut this Möbius strip in half along its length, you obtain a single

34

ε =�
g = 1

∂̂f = []

ε =�
g = 0

∂̂f =

[
γ1 = [(e◦,>)]
γ2 = [(e◦,>)]

] ε =�
g = 0

∂̂f =

[
γ1 = [(e◦1,>)]
γ2 = [(e◦2,>)]

]

ε = 6�
g = 1

∂̂f = [γ1 = [(e◦1,>)]]

ε =�
g = 0

∂̂f =

[
γ1 = [(e◦1,>)]
γ2 = [(e◦,>)2]

] ε =�
g = 0

∂̂f =

[
γ1 = [(e◦1,>)]
γ2 = [(e◦2,>)]

]

e◦1 e◦e◦1 e◦2e◦1

Figure 27: The “cut-torus” (top row, middle column) and “cut-Möbius” (bottom row, middle column) are two
examples of abstract PCS complexes where a closed edge e◦ is used twice by the same face. In the case of the
cut-torus, the two closed-edge-uses of e◦ come from two simple cycles, while in the case of the cut-Möbius, the
two closed-edge-uses of e◦ come from a single cycle repeating e◦ twice. We show these examples before the cut
(left), then after the cut (middle), then after ungluing at the cut edge e◦ (right). Ungluing the cut-torus or the
cut-Möbius at e◦ gives the same abstract PCS complex: the cylinder. It has no vertices, two closed edges e◦1
and e◦2, and a face f such that ∂̂f = (�, 0, [[h◦1]; [h◦2]]). Indeed, the two surfaces depicted in the right column
are both homeomorphic to F�,0,2.

orientable surface 1 (Figure 27, bottom-right). In terms of abstract PCS complexes, this operation can be
decomposed into two atomic topological operators:

1. The first topological operator is CutNonOrientableFaceAtNonDisconnectingOrientingClosedEdge(f) (see
Section 7.5.6), and corresponds to “tracing” the red closed edge e◦ along the middle of the Möbius strip
(Figure 27, bottom-middle). In terms of PCS complexes, this corresponds to partition f into two cells: e◦

and f\e◦. With this new (not minimal) decomposition of the Möbius strip, the cell f is now homeomorphic
to int(F�,0,2), while it was homeomorphic to int(F6�,1,1) before the cut. However, this does not change
the whole topological space X that the PCS complex represents (i.e., the union of cells), which is still
homeomorphic to the Möbius strip F 6�,1,1 (“Cutting” is simply decomposing the same space into more
cells as will be discussed later).

After this cut, we can observe that if we arbitrarily choose an orientation
for this closed curve e◦, then f is actually “both at the left side and the
right side” of e◦. This explains why f actually uses e◦ twice. But unlike
the “cut-torus” (Figure 27, top-middle), these two uses are from the same
cycle. To understand why, pick a point on e◦, then pick one side of the
face (for instance, the “left side”). If you move along e◦ while keeping
in mind which side of f you picked, then after one turn you will realize
that you end up at the other side of e◦. Hence, you have to perform two
complete turns around e◦ to actually complete the cycle, that continuously
goes through the two closed-edges-uses.

2. The second topological operator is UnglueAtClosedEdge(e◦), that actually changes the topological space

1If you have never done this experiment before, we strongly recommend that you physically verify this by yourself. Take a
rectangular piece of paper, and construct a Möbius strip by gluing the two small edges together with a half twist. Then, cut it
along its length with scissors. Verify that it is two-sided by coloring its sides with different colors.

35

X by “unconnecting” the two closed-edges-uses of e◦. Similarly to the cut-torus example (Figure 27, top),
this is achieved by “duplicating the geometry” of e◦. However, unlike the cut-torus example where this
duplicated geometry is distributed among two closed edges e◦1 and e◦2, the duplicated geometry belongs to
the same closed edge e◦2, making the closed edge twice as long as it was initially (cf. Figure 27, bottom-
right). Combinatorially, this duplication of geometry is conceptual, and it simply means that the simple
cycle γ◦i that uses multiple times e◦ is transformed into a simple cycle γ◦i that uses only once a new closed
edge.

Note that it is also possible to have Ni ≥ 3. For instance, take three rectangles glued together along a long edge,
then glue their short edges in the same way you would construct a Möbius strip, but with a third-twist instead of
a half-twist. With this understanding, we can finally define the topological operator UnglueAtClosedEdge(e◦):
for every simple cycle γ◦i = [(e◦i , βi)

Ni] that uses e◦ (possibly Ni > 1 times), we create a new closed edge e◦i and
change γ◦i into [(e◦i , βi)].

UnGlueAtClosedEdge(e◦ ∈ E◦)

1 if star(e◦) = ∅ then
2 Do nothing.
3 else
4 for all face f ∈ star(e◦) do

5 for all simple cycle γ◦i ∈ ∂̂f do
6 if e◦(γ◦i) = e◦ then . Found closed-edge-uses©e◦ f,i,1 to©e◦ f,i,N(γ◦i)

7 e◦(γ◦i)← CreateClosedEdge()
8 N(γ◦i)← 1

9 HardDelete(e◦)

Finally, to unglue at a vertex, the important difference is that for this operation to be valid, all cells in the star
of v must be unglued first. Then, we handle independently the different use cases.

UnGlueAtVertex(v ∈ V)

1 if star(v) = ∅ then
2 Do nothing.
3 else
4 for all edge e ∈ star(v) do . Unglue at all (necessarily open) star edges of v
5 UnGlueAtOpenEdge(e)

6 for all edge e ∈ star(v) do
7 if star(e) = ∅ then
8 if vstart(e) = v then . End-vertex-use©v e,start
9 vstart(e)← CreateVertex()

10 if vend(e) = v then . End-vertex-use©v e,end
11 vend(e)← CreateVertex()

12 for all face f ∈ star(v) do

13 for all Steiner cycle γ•i = [vi] ∈ ∂̂f do
14 if vi = v then . Steiner-vertex-use©v f,i
15 v(γ•i (f))← CreateVertex()

16 for all non-simple cycle γi ∈ ∂̂f do
17 for all halfedges hj ∈ γi do
18 if vend(hj) = v then . Corner-vertex-use©v f,i,j
19 vf,i,j ← CreateVertex()
20 vend(hj)← vf,i,j
21 vstart(hj+1)← vf,i,j

22 HardDelete(v)

36

v1

v2

e1

e2

f

v1

v2

e1

e2

ecut

f1 f2

v1
v2

e1 = (v1, v2)
e2 = (v2, v1)

f = (�, 0, [[•
v1

(e1,>) •
v2

(e2,>) •
v1

]])

CutFace[...]−−−−−−−→

v1
v2

e1 = (v1, v2)
e2 = (v2, v1)
ecut = (v2, v1)

f1 = (�, 0, [[•
v1

(e1,>) •
v2

(ecut,>) •
v1

]])

f2 = (�, 0, [[•
v2

(e2,>) •
v1

(ecut,⊥) •
v2

]])

Figure 28: An abstract PCS complex is transformed into another abstract PCS complex, as a result of the cut
topological operator CutOrientableFaceAtDisconnectingOpenEdge(f ,1,1,2,0,0,[]).

7.5 Cut

Given a (non-abstract) PCS complex, a cut is defined as partitioning a cell c into new cells {ccut, c1, c2, . . . },
where ccut is a proper subset of c and where {c1, c2, . . . } are the connected components of c \ ccut. We say that
“c is cut at ccut”. A valid cut is a cut such that the resulting cell decomposition is a valid PCS complex.
For instance, if a face f is cut at an open edge ecut ⊂ f , then ecut must start and end at vertices in ∂f .
From now on, whenever we say “a cut”, we mean a valid cut. It can be shown that a cut necessarily satisfies
dim(ccut) < dim(c). Subsequently, it can be shown that c \ ccut is either connected or made of two connected
components, thus c is partitioned into either two components {ccut, c′} or three components {ccut, c1, c2}. This
intuitive result should become clear with the different examples illustrated in this section.

The cut topological operator on abstract PCS complex that we describe in this section is the combinatorial coun-
terpart of the pointset definition given above. This means that a given abstract PCS complex P is transformed
into another abstract PCS complex P ′ such that the PCS complex |P ′| could have been obtained by cutting
a cell c of |P| at some subcell ccut ⊂ c. Interestingly, this means that the abstract cell ccut of P ′ is actually
an output of the cut topological operator, as illustrated in Figure 28, whereas it is more easily interpreted as
an input with the pointset definition (i.e.: “cut here”). Because an abstract PCS complex is a purely combi-
natorial object, its faces are purely abstract and not assumed to be realized as pointsets (or even as abstract
triangulations), and therefore it is not possible to say “cut here”, and we should instead say “cut this way”. For
instance, in Figure 28, it would be along the lines of “cut f at an open edge starting at v2 and ending at v1”.
However, while this sentence entirely specifies the cut in the simple example in Figure 28, things are actually
much more complicated in the general case because:

• If f uses v1 or v2 more than once, then the sentence is ambiguous: the actual vertex-uses must be specified
instead of “just” the vertices.

• If f contains several cycles, then the sentence is ambiguous: it is necessary to specify which cycles must
be transferred to f1 and which cycles must be transferred to f2.

• If the genus of f is non-zero (e.g., a torus with a hole), then the sentence is ambiguous: a cut from v2
to v1 may or may not disconnect f , depending on the actual path of ecut in a pointset sense, and this
information has to be specified combinatorially somehow.

• Other ambiguities that are detailed later.

To exhaustively cover all the possible cases, and find out what combinatorial input is necessary and sufficient to
fully determine the cut, we have to classify all the different ways a cell can be cut. Only then we can rigorously
define “cut this way”, and make sure that we are not missing any way to cut a cell. For instance, the cut
topological operator performed in Figure 28 can be more accurately expressed as “cut the orientable face f

37

at an open edge starting at the vertex-use ©v f,1,1, ending at the vertex-use ©v f,1,2, disconnecting f into two
(necessarily orientable) faces, both of genus zero, and both receiving no cycles from f”. To do this, you would
call the method CutOrientableFaceAtDisconnectingOpenEdge(f ,1,1,2,0,0,[]).

We provide below an informal overview of the different cases to consider. The exhaustive list is provided by
the following sections, and in particular the different ways to cut a face at an edge are illustrated in Figure 30
and 31.

• Cutting an open edge (at a vertex)
An open edge e becomes a vertex v and two open edges e1 and e2.

• Cutting a closed edge (at a vertex)
A closed edge e◦ becomes a vertex v and the open edge e′ = e◦ \ v.

• Cutting a face at a vertex
A face f becomes a vertex v and the face f ′ = f \ v.

• Cutting a face at a closed edge, disconnecting it
A face f becomes a closed edge e◦ and two faces f1 and f2. The holes, handles or crosscaps of f are
distributed among f1 and f2. The cycle [(e◦,>)] is added to f1 and the cycle [(e◦,⊥)] is added to f2.

• Cutting a face at a closed edge, not disconnecting it
A face f becomes a closed edge e◦ and the face f ′ = f \ e◦. If f is orientable, its genus is decreased by
one, and the two cycles [(e◦,>)] and [(e◦,⊥)] are added. If f is non-orientable, it may become orientable
or not, its genus may be decreased by one or more, and either the cycle [(e◦,>)] is added twice, or the
single cycle [(e◦,>)2] is added.

• Cutting a face at an open edge starting/ending at the same hole, disconnecting it
A face f becomes an open edge e and two faces f1 and f2. The handles or crosscaps of f are distributed
among f1 and f2. All cycles except one are distributed among f1 and f2. The last cycle γi = [π1, π2] is
split by adding [π1, (e,>)] to f1 and adding [π2, (e,⊥)] to f2.

• Cutting a face at an open edge starting/ending at the same hole, not disconnecting it
A face f becomes an open edge e and the face f ′ = f \ e. If f is orientable, its genus is decreased by one,
and the cycle γi = [π1, π2] is split into [π1, (e,>)] and [π2, (e,⊥)]. If f is non-orientable, it may become
orientable or not, its genus may be decreased by one or more, and either the two cycles [π1, (e,>)] and
[π2, (e,>)] are added, or the single cycle [π1, (e,>), π2, (e,>)] is added.

• Cutting a face at an open edge starting/ending at different holes
A face f becomes an open edge e and the face f ′ = f \ e. Two cycles γi1 and γi2 are merged into the
single cycle [γi1 , (e,>), γi2 , (e,⊥)].

7.5.1 Cutting an open edge (at a vertex)

Cutting an open edge e is a very simple operation that consists in splitting e in half by inserting a vertex in
its interior, resulting in two open edges e1 and e2 and one vertex v. One only has to take care of replacing
the halfedges using e by two halfedges using respectively e1 and e2 with the appropriate orientation. The three
words “at a vertex” are in parenthesis in the title of the section and not part of the topological operator name
because cutting an open edge is necessarily done at a vertex due to the requirement dim(ccut) < dim(c).

38

CutOpenEdge(e ∈ E|)

1 v ← CreateVertex()
2 e1 ← CreateOpenEdge(vstart(e), v)
3 e2 ← CreateOpenEdge(v, vend(e))
4 for all face f ∈ star(e) do

5 for all non-simple cycle γi ∈ ∂̂f do
6 γ′i ← []
7 for all halfedges hj ∈ γi do
8 if e(hj) = e then
9 if β(hj) = > then

10 Append (e1,>) to γ′i
11 Append (e2,>) to γ′i
12 else
13 Append (e2,⊥) to γ′i
14 Append (e1,⊥) to γ′i
15 else
16 Append hj to γ′i
17 γi(f)← γ′i
18 HardDelete(e)

7.5.2 Cutting a closed edge (at a vertex)

Cutting a closed edge e◦ follows the same idea, and it results in one open edge e and one vertex v.

CutClosedEdge(e◦ ∈ E◦)

1 v ← CreateVertex()
2 e← CreateOpenEdge(v, v)
3 for all face f ∈ star(e◦) do

4 for all simple cycle γ◦i = [(e◦i , βi)
Ni] ∈ ∂̂f do

5 if e◦i = e◦ then
6 γi(f)← [•

v
(e, βi) •

v
· · · •

v
(e, βi) •

v
] . Replace the simple cycle by a non-simple cycle

that repeats Ni times the open edge e

7 HardDelete(e◦)

7.5.3 Cutting a face at a vertex

A trivial way to cut a face is via a vertex. This means that we decompose the face f into a new vertex v and
the new face f \ v.

CutFaceAtVertex(f ∈ F)

1 v ← CreateVertex()
2 AddSteinerCycleToFace(f ,v)

7.5.4 Cutting a face at an edge

Cutting a face at an open or closed edge is a much harder operation because there are many non-trivial and
non-equivalent ways a face can be cut (cf. Figure 29): the face may become disconnected or not, its orientability
and genus may change or not, and different cycles may be added, split, or merged together. If the abstract PCS
complex is realized as a triangulation, and the cut edge is given as a subset of the edges in the triangulation,

39

If ε =�

f ′

f1, f2

If ε = 6�

f ′

f1, f2

ε′ =�

ε′ = 6�
k′ = k + 2

k′ = k + 1

ε1 =�
ε2 =6�

ε′ =� g′ = g − 1 k′ = k + 2

ε1 =�
ε2 =�

g1 + g2 = g k1 + k2 = k + 2

ε′ =� g′ = g−1
2 k′ = k + 1

ε′ =� g′ = g−2
2 k′ = k + 2

ε′ =6� g′ = g − 1 k′ = k + 1

ε′ = 6� g′ = g − 2 k′ = k + 2

ε1 =�
ε2 = 6� 2g1 + g2 = g k1 + k2 = k + 2

ε1 = 6�
ε2 =�

g1 + 2g2 = g k1 + k2 = k + 2

ε1 = 6�
ε2 = 6� g1 + g2 = g k1 + k2 = k + 2

If g is odd:

If g is even:

ε1 =6�
ε2 =�

ε1 = 6�
ε2 = 6�

If ε =�

f ′

f1, f2

If ε = 6�

f ′

f1, f2

ε′ =�

ε′ = 6�
k′ = k + 2

k′ = k + 1

ε1 =�
ε2 = 6�

ε′ =� g′ = g − 1 k′ = k + 1

ε1 =�
ε2 =�

g1 + g2 = g k1 + k2 = k + 1

ε′ =� g′ = g−1
2 k′ = k

ε′ =� g′ = g−2
2 k′ = k + 1

ε′ =6� g′ = g − 1 k′ = k

ε′ = 6� g′ = g − 2 k′ = k + 1

ε1 =�
ε2 = 6� 2g1 + g2 = g k1 + k2 = k + 1

ε1 = 6�
ε2 =�

g1 + 2g2 = g k1 + k2 = k + 1

ε1 = 6�
ε2 = 6� g1 + g2 = g k1 + k2 = k + 1

If g is odd:

If g is even:

ε1 =6�
ε2 =�

ε1 = 6�
ε2 = 6�

ecut is a
closed edge

CutFaceAtEdge()

ecut is an
open edge starting

and ending at
the same hole

ecut is an
open edge starting

and ending at
different holes ε′ = ε g′ = g k′ = k − 1

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

(m)

(n)

(o)

(p)

(q)

(r)

(s)

Figure 29: Exhaustive classification of the 19 different ways a face can be cut at an edge. The branching “if”s
represent known information about the abstract PCS complex that is about to be cut. The branching arrows
represent information about ecut that cannot be algorithmically determined, and hence that has to be given as
input of the PCS topological operator (either as parameters or by calling different methods). We only show
here the unknown information that leads to different orientabilities, genus formulae, number of faces, or number
of cycles (e.g.: is ecut closed or not? Does ecut disconnect the face?). Additional parameters to give to the
topological operators include: if ecut disconnects f , which cycles to transfer to f1 or f2? What are the new
genuses g1 and g2? If ecut is open, at which vertex-uses does it start and end? Should some cycles be flipped?

40

(a)

∂̂f = [· · ·] ∂̂f ′ =

 · · ·
[(e◦,>)]
[(e◦,⊥)]

g ≥ 1 g′ = g − 1
ε =� ε′ =�

f f ′

e◦

g = 1 g′ = 0

g = 2 g′ = 1

g = 2 g′ = 1

g = 2 g′ = 1

(b)

∂̂f1 =

[
· · ·1

[(e◦,>)]

]
∂̂f =

[
· · ·1
· · ·2

]
∂̂f2 =

[
· · ·2

[(e◦,⊥)]

]

g = 2

g = 2

g1 = 2

g2 = 0

g1 = 1

g2 = 1

f f1
f2

e◦

g1 + g2 = gg ≥ 0
ε =� ε1 =� ε2 =�

g = 1 g1 = 0
g2 = 1

(c)

ε = 6�
g ≥ 1

ε′ =�
g′ = g−1

2

∂̂f ′ =

[
· · ·

[(e◦,>)2]

]
∂̂f = [· · ·]

ε′ =�
g′ = 0

ε =6�
g = 1

ε = 6�
g = 3

ε′ =�
g′ = 1

(d)

∂̂f ′ =

 · · ·
[(e◦,>)]
[(e◦,>)]

∂̂f = [· · ·]

ε = 6�
g ≥ 2

ε′ =�
g′ = g−2

2

ε = 6�
g = 2

ε′ =�
g′ = 0

(e)

ε =6�
g ≥ 2

ε′ = 6�
g′ = g − 1

∂̂f ′ =

[
· · ·

[(e◦,>)2]

]
∂̂f = [· · ·]

ε = 6�
g = 3

ε′ = 6�
g′ = 2

ε = 6�
g = 2

ε′ = 6�
g′ = 1

(f)

∂̂f ′ =

 · · ·
[(e◦,>)]
[(e◦,>)]

∂̂f = [· · ·]

ε = 6�
g ≥ 3

ε′ = 6�
g′ = g − 2

ε =6�
g = 3

ε′ = 6�
g′ = 1

(g), (h), (i)

e◦
ε1 = 6�
g1 = 1ε =6�

g = 1 ε2 =�
g2 = 0

∂̂f1 =

[
· · ·1

[(e◦,>)]

]
∂̂f =

[
· · ·1
· · ·2

]
∂̂f2 =

[
· · ·2

[(e◦,⊥)]

]

ε = 6�
g = 1

ε1 =�
g1 = 0
ε2 = 6�
g2 = 1

ε =6�
g = 3

ε1 =�
g1 = 1
ε2 = 6�
g2 = 1

ε = 6�
g = 3

ε1 =�
g1 = 1
ε2 = 6�
g2 = 1

ε = 6�
g = 3

ε1 = 6�
g1 = 1
ε2 =�
g2 = 1

2g1 + g2 = gg ≥ 1
ε = 6� ε1 =� ε2 = 6�

g1 + 2g2 = g
ε1 = 6� ε2 =�

(g)

(h)
g ≥ 1
ε = 6�

g1 + g2 = g
ε1 = 6� ε2 = 6�(i)

g ≥ 2
ε = 6�

g = 2
ε =6�

g1 = 1
ε1 = 6�

g2 = 1
ε2 = 6�

(i)

(g) or (h)

g = 3
ε =6�

g1 = 1
ε1 =6�

g2 = 2
ε2 =6�

Figure 30: The different ways to cut a face at a closed edge. The labelling letters refer to the classification
provided in Figure 29.

41

(j)

∂̂f =

[
· · ·

[•
v1

π1 •
v2

π2 •
v1

]

]

∂̂f ′ =

 · · ·
[•
v1

π1 •
v2

(e,>) •
v1

]

[•
v2

π2 •
v1

(e,⊥) •
v2

]

ε =�
g ≥ 1

ε′ =�
g′ = g − 1

v1

π1
v2

π2

f f ′

e

(k)

g ≥ 0

∂̂f1 =

[
· · ·1

[•
v1

π1 •
v2

(e,>) •
v1

]

]
∂̂f =

 · · ·1
· · ·2

[•
v1

π1 •
v2

π2 •
v1

]

∂̂f2 =

[
· · ·2

[•
v2

π2 •
v1

(e,⊥) •
v2

]

]

v1

π1
v2

π2 e

f f1 f2

ε =�
g1 + g2 = g
ε′ =�

(m)

e

ε =6�
g = 2

ε′ =�
g′ = 0

v2

π1

π2v1

ε = 6�
g ≥ 2

ε′ =�
g′ = g−2

2

∂̂f ′ =

 · · ·
[•
v1

π1 •
v2

(e,>) •
v1

]

[•
v1

π2 •
v2

(e,>) •
v1

]

∂̂f =

[
· · ·

[•
v1

π1 •
v2

π2 •
v1

]

]

(n)

ε =6�
g ≥ 2

ε′ = 6�
g′ = g − 1

∂̂f =

[
· · ·

[•
v1

π1 •
v2

π2 •
v1

]

]

∂̂f ′ =

 · · ·
[•
v1

π1 •
v2

(e,>) •
v1

π2 •
v2

(e,>) •
v1

]

ε = 6�
g = 3

ε′ = 6�
g′ = 2

ε = 6�
g = 2

ε′ =6�
g′ = 1v1

v2

π1
π2

e

v1
v2

π1
π2

e

(o)
ε = 6�
g ≥ 3

ε′ = 6�
g′ = g − 2

ε = 6�
g = 3

ε′ = 6�
g′ = 1

v2

π1

π2v1

∂̂f ′ =

 · · ·
[•
v1

π1 •
v2

(e,>) •
v1

]

[•
v1

π2 •
v2

(e,>) •
v1

]

∂̂f =

[
· · ·

[•
v1

π1 •
v2

π2 •
v1

]

]

(p), (q), (r)

ε1 = 6�
g1 = 1ε = 6�

g = 1 ε2 =�
g2 = 0

v2
v1

π2
π1

e

∂̂f1 =

[
· · ·1

[•
v1

π1 •
v2

(e,>) •
v1

]

]
∂̂f =

 · · ·1
· · ·2

[•
v1

π1 •
v2

π2 •
v1

]

∂̂f2 =

[
· · ·2

[•
v2

π2 •
v1

(e,⊥) •
v2

]

]

ε = 6�
g = 3

ε1 =6�
g1 = 1
ε2 =�
g2 = 1

v1
v2 π2

π1

e

ε = 6�
g = 3

ε1 =�
g1 = 1
ε2 =6�
g2 = 1

v2

π2

v1
π1

e

g = 2
ε = 6�

g1 = 1
ε1 = 6�

g2 = 1
ε2 = 6�

2g1 + g2 = gg ≥ 1
ε =6� ε1 =� ε2 = 6�

g1 + 2g2 = g
ε1 = 6� ε2 =�

(p)

(q)
g ≥ 1
ε =6�

g1 + g2 = g
ε1 = 6� ε2 = 6�(r)

g ≥ 2
ε = 6�

(r)

(p) or (q)
(l)

∂̂f =

[
· · ·

[•
v1

π1 •
v2

π2 •
v1

]

]

∂̂f ′ =

 · · ·
[•
v1

π1 •
v2

(e,>) •
v1

π2 •
v2

(e,>) •
v1

]

ε = 6�
g ≥ 1

ε′ =�
g′ = g−1

2

e ε′ =�
g′ = 0

ε′ = 6�
g = 1

v1 v2

π1
π2

ε = 6�
g = 3

ε′ =�
g′ = 1

v1

v2
π2

π1

e

(s)

∂̂f =

 · · ·
[•
v1

γ1 •
v1

]

[•
v2

γ2 •
v2

]

∂̂f ′ =

 · · ·
[•
v1

γ1 •
v1

(e,>) •
v2

γ2 •
v2

(e,⊥) •
v2

]

γ2

v1
v2γ1 e

ε ∈ {�, 6�} ε′ = ε
g ≥ 0 g′ = g

Figure 31: The different ways to cut a face at an open edge. The labelling letters refer to the classification
provided in Figure 29.

42

then it is possible to compute in which case we are, and perform the appropriate operation. However, at the
combinatorial level of the abstract PCS complex, no such realization as triangulation is assumed, therefore
“how” the face is cut has to be specified somehow. For instance, if a face f is a sphere with k holes, and we cut
it at a closed edge e◦, then we know for sure that this disconnects f into two faces f1 and and f2. However,
without more information, there is no way to know combinatorially which holes of f must be transferred to f1,
and which holes must be transferred to f2. Hence, this information has to be given as input of the topological
operator. In this case, the operator could be:

CutSphereAtClosedEdge(f ∈ F , I ⊆ N)

Require: ε(f) =� and g(f) = 0

1 e◦ ← CreateClosedEdge() . Create the cut edge e◦ and the two faces f1 and f2
2 f1 ← CreateFace(�, 0)
3 f2 ← CreateFace(�, 0)

4 for all cycle γi of f do . Distribute the cycles of f among f1 and f2
5 if i ∈ I then
6 AddCycleToFace(f1,γi(f))
7 else
8 AddCycleToFace(f2,γi(f))

9 AddSimpleCycleToFace(f1,e◦,>,1) . Add the cycle [(e◦,>)] to f1 and the cycle [(e◦,⊥)] to f2
10 AddSimpleCycleToFace(f2,e◦,⊥,1)

11 HardDelete(f) . Delete f

The above topological operator is quite simple, but things get much more complicated when f is not a sphere,
and especially when f is non-orientable. In order to cover all the different cases with a finite but exhaustive
set of topological operators, it is necessary to classify all these different cases. We call this the face-cut
classification, summarized in Figure 29, illustrated in Figure 30 and Figure 31, and detailed in the following
subsections.

7.5.5 Cutting an orientable face at a closed edge

The first way to cut a face is via a closed edge included in the face. We recall that the geometric realization
of a face is int(Fε,g,k), and all the possibilities are illustrated in Figure 3. As can be seen in Figure 29, there
exist many ways to choose a closed edge e◦ inside the interior of a face f . In this section and the following, we
classify all of them.

First, let us consider the case where f is orientable. Let e◦ be a closed edge included in f . Thus, the pointset
f \ e◦ is either connected or it is not. If f \ e◦ is connected, this completely determines the cut, i.e. any
choice of e◦ included in an orientable face f such that f \ e◦ is connected leads to the same PCS complex up
to homeomorphism, i.e. they have the same abstract PCS complex. This abstract PCS complex is obtained
from the abstract PCS complex before the cut by decreasing the genus of f by one, and adding the two cycles
[(e◦,>)] and [(e◦,⊥)] to f . This is performed by the topological operator below:

CutOrientableFaceAtNonDisconnectingClosedEdge(f ∈ F)

Require: ε(f) =� and g(f) ≥ 1

1 g(f)← g(f)− 1
2 e◦ ← CreateClosedEdge()
3 AddSimpleCycleToFace(f ,e◦,>,1)
4 AddSimpleCycleToFace(f ,e◦,⊥,1)

If, at the contrary, f \ e◦ is not connected, then this means that it has two connected components f1 and
f2, both orientable and satisfying g(f) = g(f1) + g(f2), where the cycles of f are distributed among f1 and
f2, the cycle [(e◦,>)] is added to f1, and the cycle [(e◦,⊥)] is added to f2. However, the actual values of
g(f1) and g(f2), as well as which cycles are transferred to f1 and which cycles are transferred to f2 cannot be

43

determined combinatorially without an underlying triangulation, and must therefore be an input of the following
PCS topological operator. We note that the “CutSphereAtClosedEdge” operator that we have presented as a
motivating example is redundant with this operator and therefore is not part of the classification.

CutOrientableFaceAtDisconnectingClosedEdge(f ∈ F , g1 ∈ N, g2 ∈ N, I ⊆ N)

Require: ε(f) =� and g(f) = g1 + g2

1 e◦ ← CreateClosedEdge() . Create the cut edge e◦ and the two faces f1 and f2
2 f1 ← CreateFace(�, g1)
3 f2 ← CreateFace(�, g2)

4 for all cycle γi of f do . Distribute the cycles of f among f1 and f2
5 if i ∈ I then
6 AddCycleToFace(f1,γi(f))
7 else
8 AddCycleToFace(f2,γi(f))

9 AddSimpleCycleToFace(f1,e◦,>,1) . Add the cycle [(e◦,>)] to f1 and the cycle [(e◦,⊥)] to f2
10 AddSimpleCycleToFace(f2,e◦,⊥,1)

11 HardDelete(f) . Delete f

7.5.6 Cutting a non-orientable face at a closed edge

In this section, let us consider the case where a non-orientable f is cut at a closed edge e◦. The pointset
f ′ = f \ e◦ is either connected or it is not, and let us first consider the case where it is connected. At the
contrary to the orientable case presented in the previous section, the information “f \ e◦ is connected” does not
fully determine the cut, unless g(f) = 1. More specifically, it is in fact always possible to choose e◦ such that
f ′ becomes orientable, but if g(f) ≥ 2 then it is also possible to choose e◦ such that f ′ stays non-orientable.
Reasoning with the Euler characteristic, it can be shown that if f ′ is orientable, then this information fully
determines the cut, which is given by the following topological operator:

CutNonOrientableFaceAtNonDisconnectingOrientingClosedEdge(f ∈ F)

Require: ε(f) =6�

1 if g(f) is odd then
2 ε(f)←�
3 g(f)← g−1

2
4 e◦ ← CreateClosedEdge()
5 AddSimpleCycleToFace(f ,e◦,>,2)
6 else
7 ε(f)←�
8 g(f)← g−2

2
9 e◦ ← CreateClosedEdge()

10 AddSimpleCycleToFace(f ,e◦,>,1)
11 AddSimpleCycleToFace(f ,e◦,>,1)

However, if f ′ is non-orientable, then there still remains some ambiguity. Specifically, whenever g ≥ 2 it is
possible to cut by preserving non-orientability and adding only one boundary (i.e., adding the cycle [(e◦,>)2]),
and whenever g ≥ 3 it is also possible to cut by preserving non-orientability and adding two boundaries (i.e.,
add the cycle [(e◦,>)] twice). In the first scenario, it can be shown that the genus is decreased by one, and in
the second scenario it can be shown that the genus is decreased by two. Therefore, this leads to the following
two topological operators:

44

CutNonOrientableFaceAtNonDisconnectingNonOrientingOddClosedEdge(f ∈ F)

Require: ε(f) =6� and g ≥ 2

1 g(f)← g − 1
2 e◦ ← CreateClosedEdge()
3 AddSimpleCycleToFace(f ,e◦,>,2)

CutNonOrientableFaceAtNonDisconnectingNonOrientingEvenClosedEdge(f ∈ F)

Require: ε(f) =6� and g ≥ 3

1 g(f)← g − 2
2 e◦ ← CreateClosedEdge()
3 AddSimpleCycleToFace(f ,e◦,>,1)
4 AddSimpleCycleToFace(f ,e◦,>,1)

Now that we have finished to consider all the cases where f \ e◦ was connected, we are about to consider the
cases where f \ e◦ is not connected, and therefore has two connected components f1 and f2. In this case, as
with the orientable case, the cycles of f must be distributed among f1 and f2, the cycle [(e◦,>)] is added to f1,
and the cycle [(e◦,⊥)] is added to f2. Since f is non-orientable, it can be shown that f1 and f2 cannot be both
orientable, but all three other combinations are possible: f1 orientable and f2 non-orientable; f1 non-orientable
and f2 orientable; or both f1 and f2 non-orientable (however, the latter is only possible if g(f) ≥ 2). Reasoning
with the Euler characteristic, it can be shown that for each of these three cases, we have the genus relation,
respectively: g(f) = 2g(f1) + g(f2); g(f) = g(f1) + 2g(f2); and g(f) = g(f1) + g(f2). However, whether f1
and f2 are orientable and the actual values of g(f1) and g(f2) cannot be determined algorithmically without an
underlying triangulation. Therefore, they are all input of the following topological operator that spans all the
three cases:

CutNonOrientableFaceAtDisconnectingClosedEdge(f ∈ F , ε1, ε2 ∈ {�, 6�}, g1, g2 ∈ N, I ⊆ N)

Require: ε(f) =6�
Require: ε1 = 6� or ε2 = 6�
Require: (ε1 =� and ε2 = 6�) ⇒ (g2 ≥ 1 and g(f) = 2g1 + g2)
Require: (ε1 = 6� and ε2 =�) ⇒ (g1 ≥ 1 and g(f) = g1 + 2g2)
Require: (ε1 = 6� and ε2 = 6�) ⇒ (g1 ≥ 1, g2 ≥ 1, and g(f) = g1 + g2)

1 e◦ ← CreateClosedEdge() . Create the cut edge e◦ and the two faces f1 and f2
2 f1 ← CreateFace(ε1, g1)
3 f2 ← CreateFace(ε2, g2)

4 for all cycle γi of f do . Distribute the cycles of f among f1 and f2
5 if i ∈ I then
6 AddCycleToFace(f1,γi(f))
7 else
8 AddCycleToFace(f2,γi(f))

9 AddSimpleCycleToFace(f1,e◦,>,1) . Add the cycle [(e◦,>)] to f1 and the cycle [(e◦,⊥)] to f2
10 AddSimpleCycleToFace(f2,e◦,⊥,1)

11 HardDelete(f) . Delete f

7.5.7 Cutting a face at an open edge starting and ending at the same hole

As illustrated in Figure 29, this case is very similar to cutting at a closed edge, and follows the same classification.
The difference is that instead of adding the two cycles [(e◦,>)] and [(e◦,⊥)] (resp., twice the cycle [(e◦,>)], or
the single cycle [(e◦,>)2]), we remove one cycle γi (the cycle corresponding to the starting/ending hole), split
it into two paths π1 and π2, then add the two cycles [π1, (e,>)] and [π2, (e,⊥)] (resp., the two cycles [π1, (e,>)]

45

∂̂f =

[
[(e◦4,>)]

[•
v

(e1,>) •
v

(e2,>) •
v

(e3,>) •
v

]

]

f
e1

e2e3

e◦4

v

©v f,2,1 ©v f,2,2 ©v f,2,3

©v f,2,1

©v f,2,2

©v f,2,3

f1
e

e2e3

e◦4f2

e1

v

∂̂f1 =

[
[(e◦4,>)]

[•
v

(e1,>) •
v

(e2,>) •
v

(e,>) •
v

]

]

∂̂f2 =
[

[•
v

(e3,>) •
v

(e,⊥) •
v

]
]

f1

e
e2e3

e◦4

f2

e1

v

∂̂f1 =

[
[(e◦4,>)]

[•
v

(e3,>) •
v

(e1,>) •
v

(e,>) •
v

]

]

∂̂f2 =
[

[•
v

(e2,>) •
v

(e,⊥) •
v

]
]

f1

e

e2e3

e◦4f2

e1

v

∂̂f1 =

[
[(e◦4,>)]

[•
v

(e3,>) •
v

(e1,>) •
v

(e2,>) •
v

(e,>) •
v

]

]

∂̂f2 =
[

[•
v

(e,⊥) •
v

]
]

Figure 32: Three different cuts that start and end at the same vertex, but with different vertex-uses.

and [π2, (e,>)], or the single cycle [π1, (e,>), π2, (e,>)]).

As illustrated in Figure 32, one issue is that the same vertex may be used several times by the same cycle,
and hence knowing vstart(e) and vend(e) is in general not enough information to combinatorially determine at
which two indices the cycle γi must be split. Therefore, these indices must be explicitly provided as input of
the topological operator, in the form of two integers jstart and jend, in addition to the integer i specifying γi.
Finally, we note that the same vertex-use ©v f,i,j can be specified as both start and end vertex-use of the cut
(cf Figure 32, bottom-left), in which case either π1 or π2 is empty, while the other is equal to the whole cycle
γi. To disambiguate which is which, the caller of the operator must indicate either jend = jstart (to get π1 = γi
and π2 = []), or jend = jstart + N(γi) (to get π1 = [] and π2 = γi). In the special case where γi is a Steiner
cycle, then jstart and jend are not necessary and are simply ignored. We note that γi cannot be a simple cycle,
since a simple cycle do not have any vertex-use.

Combining the above observations with the classification already given for cutting at a closed edge, we obtain
six topological operators that are reported in this section. But first, we define the helper method SplitCycle()
splitting a cycle γ into two paths π1 and π2, given two indices jstart and jend indicating where to split γ:

46

SplitCycle(γ ∈ Γ, jstart ∈ N, jend ∈ N)

Require:

γ is a Steiner cycle, or
γ is a non-simple cycle, and
jstart ∈ [1..N(γ)], and jend = jstart, or

jend = jstart +N(γ), or
jend ∈ [1..N(γ)] and jstart 6= jend

1 if γ is a Steiner cycle then . γ = [v]
2 vstart ← v(γ)
3 vend ← v(γ)
4 π1 ← [v(γ)]
5 π2 ← [v(γ)]

6 else
7 if jend = jstart then . γ = [h1 · · · hjstart •

vjstart
hjstart+1 · · · hN]

8 vstart ← vjstart(γ)
9 vend ← vjstart(γ)

10 π1 ← [hjstart+1 · · · hN h1 · · · hjstart]
11 π2 ← [vjstart(γ)]

12 else if jend = jstart +N(γ) then
13 vstart ← vjstart(γ)
14 vend ← vjstart(γ)
15 π1 ← [vjstart(γ)]
16 π2 ← [hjstart+1 · · · hN h1 · · · hjstart]

17 else if jstart < jend then . γ = [h1 · · · hjstart •
vjstart

hjstart+1 · · · hjend •
vjend

hjend+1 · · · hN]

18 vstart ← vjstart(γ)
19 vend ← vjend

(γ)
20 π1 ← [hjend+1 · · · hN h1 · · · hjstart]
21 π2 ← [hjstart+1 · · · hjend

]

22 else . γ = [h1 · · · hjend •
vjend

hjend+1 · · · hjstart •
vjstart

hjstart+1 · · · hN]

23 vstart ← vjstart(γ)
24 vend ← vjend

(γ)
25 π1 ← [hjend+1 · · · hjstart]
26 π2 ← [hjstart+1 · · · hN h1 · · · hjend

]

27 return (vstart, vend, π1, π2)

We now report all the six different methods that can be used to cut a face at an open edge starting and ending
at the same hole. In addition to specific parameters, all these methods have in common the parameters f ∈ F ,
i ∈ N, jstart ∈ N, jend ∈ N with the following requirement that we report here for conciseness:

i ∈ [1..k(f)], and

γi(f) is a Steiner cycle, or
γi(f) is a non-simple cycle, and
jstart ∈ [1..N(γi(f))], and jend = jstart, or

jend = jstart +N(γi(f)), or
jend ∈ [1..N(γi(f))] and jstart 6= jend

(68)

47

CutOrientableFaceAtNonDisconnectingOpenEdge(f ∈ F , i ∈ N, jstart ∈ N, jend ∈ N)

Require: ε(f) =� and g(f) ≥ 1
Require: Equation 68

1 (vstart, vend, π1, π2)← SplitCycle(γi(f), jstart, jend)

2 g(f)← g(f)− 1
3 e← CreateOpenEdge(vstart, vend)
4 AddNonSimpleCycleToFace(f , [π1, (e,>)])
5 AddNonSimpleCycleToFace(f , [π2, (e,⊥)])
6 RemoveCycleFromFace(f ,i)

CutOrientableFaceAtDisconnectingOpenEdge(f ∈ F , i ∈ N, jstart, jend ∈ N, g1, g2 ∈ N, I ⊆ N)

Require: ε(f) =� and g(f) = g1 + g2
Require: Equation 68

1 (vstart, vend, π1, π2)← SplitCycle(γi(f), jstart, jend)

2 e← CreateOpenEdge(vstart, vend) . Create the cut edge e and the two faces f1 and f2
3 f1 ← CreateFace(�, g1)
4 f2 ← CreateFace(�, g2)

5 for all cycle γi′ of f , i′ 6= i do . Distribute the cycles of f , except γi, among f1 and f2
6 if i′ ∈ I then
7 AddCycleToFace(f1,γi′(f))
8 else
9 AddCycleToFace(f2,γi′(f))

10 AddNonSimpleCycleToFace(f1, [π1, (e,>)]) . Add the cycle [π1, (e,>)] to f1 and [π2, (e,⊥)] to f2
11 AddNonSimpleCycleToFace(f2, [π2, (e,⊥)])

12 HardDelete(f) . Delete f

CutNonOrientableFaceAtNonDisconnectingOrientingOpenEdge(f ∈ F , i ∈ N, jstart ∈ N, jend ∈ N)

Require: ε(f) =6�
Require: Equation 68

1 (vstart, vend, π1, π2)← SplitCycle(γi(f), jstart, jend)

2 if g(f) is odd then
3 ε(f)←�
4 g(f)← g−1

2
5 e← CreateOpenEdge(vstart, vend)
6 AddNonSimpleCycleToFace(f , [π1, (e,>), π2, (e,>)])
7 RemoveCycleFromFace(f ,i)
8 else
9 ε(f)←�

10 g(f)← g−2
2

11 e← CreateOpenEdge(vstart, vend)
12 AddNonSimpleCycleToFace(f , [π1, (e,>)])
13 AddNonSimpleCycleToFace(f , [π2, (e,>)])
14 RemoveCycleFromFace(f ,i)

48

CutNonOrientableFaceAtNonDisconnectingNonOrientingOddOpenEdge(f ∈ F , i, jstart, jend ∈ N)

Require: ε(f) =6� and g ≥ 2
Require: Equation 68

1 (vstart, vend, π1, π2)← SplitCycle(γi(f), jstart, jend)

2 g(f)← g − 1
3 e← CreateOpenEdge(vstart, vend)
4 AddNonSimpleCycleToFace(f , [π1, (e,>), π2, (e,>)])
5 RemoveCycleFromFace(f ,i)

CutNonOrientableFaceAtNonDisconnectingNonOrientingEvenOpenEdge(f ∈ F , i, jstart, jend ∈ N)

Require: ε(f) =6� and g ≥ 3
Require: Equation 68

1 (vstart, vend, π1, π2)← SplitCycle(γi(f), jstart, jend)

2 g(f)← g − 2
3 e← CreateOpenEdge(vstart, vend)
4 AddNonSimpleCycleToFace(f , [π1, (e,>)])
5 AddNonSimpleCycleToFace(f , [π2, (e,>)])
6 RemoveCycleFromFace(f ,i)

CutNonOrientableFaceAtDisconnectingOpenEdge(f ∈ F , i, jstart, jend, ε1, ε2, g1, g2, I ⊆ N)

Require: ε(f) =6�
Require: ε1 = 6� or ε2 = 6�
Require: (ε1 =� and ε2 = 6�) ⇒ (g2 ≥ 1 and g(f) = 2g1 + g2)
Require: (ε1 = 6� and ε2 =�) ⇒ (g1 ≥ 1 and g(f) = g1 + 2g2)
Require: (ε1 = 6� and ε2 = 6�) ⇒ (g1 ≥ 1, g2 ≥ 1, and g(f) = g1 + g2)
Require: Equation 68

1 (vstart, vend, π1, π2)← SplitCycle(γi(f), jstart, jend)

2 e← CreateOpenEdge(vstart, vend) . Create the cut edge e and the two faces f1 and f2
3 f1 ← CreateFace(ε1, g1)
4 f2 ← CreateFace(ε2, g2)

5 for all cycle γi′ of f , i′ 6= i do . Distribute the cycles of f , except γi, among f1 and f2
6 if i ∈ I then
7 AddCycleToFace(f1,γi′(f))
8 else
9 AddCycleToFace(f2,γi′(f))

10 AddNonSimpleCycleToFace(f1, [π1, (e,>)]) . Add the cycle [π1, (e,>)] to f1 and [π2, (e,⊥)] to f2
11 AddNonSimpleCycleToFace(f2, [π2, (e,⊥)])

12 HardDelete(f) . Delete f

7.5.8 Cutting a face at an open edge starting and ending at different holes

Finally, the last case to consider is when the cut edge e is an open edge that starts and ends at different holes,
represented by different cycles γi1 and γi2 of f . Fortunately, this case is actually very easy to handle, as it can
be shown that it never disconnects f , and preserves its orientability and genus. Therefore, its only action is to
merge the two cycles γi1 and γi2 into a single cycle, by joining them with e, as per the algorithm below:

49

RotatedCycle(γ ∈ Γ, j ∈ N)

Require: γ is a Steiner cycle, or a non-simple cycle with j ∈ [1..N(γ)]

1 if γ is a Steiner cycle then . γ = [v]
2 v′ ← v(γ)
3 γ′ ← γ
4 else . γ = [h1 · · · hj •

vj
hj+1 · · · hN]

5 v′ ← vj(γ)
6 γ′ ← [hj+1 · · · hN h1 · · · hj]

7 return (v′, γ′)

CutFaceAtOpenEdge(f ∈ F , i1 ∈ N, i2 ∈ N, j1 ∈ N, j2 ∈ N)

Require: (i1, i2) ∈ [1..k(f)]2

Require: γi1(f) is a Steiner cycle, or a non-simple cycle with j1 ∈ [1..N(γi1(f))]
Require: γi2(f) is a Steiner cycle, or a non-simple cycle with j2 ∈ [1..N(γi2(f))]

1 (v1, γ1)← RotatedCycle(i1, j1)
2 (v2, γ2)← RotatedCycle(i2, j2)

3 e← CreateOpenEdge(v1, v2)
4 AddNonSimpleCycleToFace(f , [γ1, (e,>), γ2, (e,⊥)])
5 RemoveCyclesFromFace(f ,{i1, i2})

7.5.9 Flipping cycles of non-orientable faces

When cutting a non-orientable face, there is one additional subtelty that has been omitted for clarity. It starts
with the observation that orientations of cycles matter for orientable faces, but do not matter for non-orientable
faces. This means that it is always possible to flip the orientation of any cycle of any non-orientable face, and
this will result in a homeomorphic abstract PCS complex (i.e., their geometric realization is homeomorphic).
Therefore, the topological operator below is essentially a no-operation, and can be performed at any time
without changing what PCS complex it represents:

FlipCycle(f ∈ F , i ∈ N)

Require: ε(f) =6� and i ∈ [1..k(f)]

1 γi(f)← γi(f)

However, it cannot be performed for orientable faces since it could lead to non-homeomorphic PCS complexes.
For instance, consider two abstract PCS complexes, each of them being made of one closed cycle e◦ and one face
f . In the first abstract PCS complex, the face is f = (�, 0, [[(e◦,>)], [(e◦,>)]]), while in the second abstract
PCS complex, the face is f = (�, 0, [[(e◦,>)], [(e◦,⊥)]]). In both cases, it is possible to uncut at e◦, but the
resulting PCS complexes are not homeomorphic: one leads to a Klein bottle while the other leads to a torus,
as formalized below:

f = (�, 0,

[
[(e◦,>)]
[(e◦,>)]

]
)

UnCutAt(e◦)−−−−−−−−→ f ′ = (6�, 2, []) (69)

f = (�, 0,

[
[(e◦,>)]
[(e◦,⊥)]

]
)

UnCutAt(e◦)−−−−−−−−→ f ′ = (�, 1, []) (70)

50

This has to be compared with the non-orientable case, where indeed orientation does not matter, as illustrated
by the examples below:

f = (6�, 1,
[

[(e◦,>)]
[(e◦,>)]

]
)

UnCutAt(e◦)−−−−−−−−→ f ′ = (6�, 3, []) (71)

f = (6�, 1,
[

[(e◦,>)]
[(e◦,⊥)]

]
)

UnCutAt(e◦)−−−−−−−−→ f ′ = (6�, 3, []) (72)

Therefore, when a non-orientable face f generates an orientable face f ′, f1 or f2 under the action of a cut, in
addition to give as input which cycles to transfer to the orientable face, it is also necessary to give as input
what orientations to give to these cycles, orientations that could be computed if ecut was given as edges of an
underlying triangulation. Also, in the case where a non-orientable face is cut at an open edge starting and
ending at the same hole, there are in fact two possible non-homeomorphic outcomes of the cut: either merging
γi1 and γi2 into [γi1 , (e,>), γi2 , (e,⊥)], or merging them into [γi1 , (e,>), γi2 , (e,⊥)].

Instead of making the input of the topological operators more complicated that it already is, this can simply be
achieved by calling FlipCycle() as many times as necessary before calling one of the CutNonOrientableFace[. . .]
methods (or CutFaceAtOpenEdge() if f is non-orientable), and this sequence can be seen as the whole cut
operator.

7.6 Uncut

We now present the uncut topological operator, which is the reverse of the cut operator. Since all the important
ideas have already been covered in the previous section, we provide here the algorithm but do not comment it
extensively. Nevertheless, here are two important observations:

• Given a cell c, it is not always possible to “uncut at c”. More specifically, it is possible to uncut at c if
and only if c may have been created as the cut cell of a cut topological operator.

• At the contrary to the cut operator, the uncut operator is not ambiguous. This means that indicating
which cell to uncut at is the only necessary input. One way to interpret this fundamental difference
between cut and uncut is that before the cut, we do not know yet ecut, and hence we have to fully specify
combinatorially how it cuts a given face. However, for the reverse operation, ecut does exist, and hence
we know exactly how it is used, e.g. as a frontier between two known faces. Merging back these two faces
into one face is a non-ambiguous process, but during which information about ecut is lost, reason why the
reverse process is ambiguous.

CanUnCutAt(c ∈ C)

1 if c ∈ V then
2 return CanUnCutAtVertex(c)
3 else if c ∈ E◦ then
4 return CanUnCutAtClosedEdge(c)
5 else if c ∈ E| then
6 return CanUnCutAtOpenEdge(c)
7 else if c ∈ F then
8 return false

51

CanUnCutAtVertex(v ∈ V)

1 if star(v) = ∅ then
2 return false
3 else

. Count the number of end-vertex-uses, including edges with incident faces (unlike UnGlue).

4 Nincident−edges ← 0
5 Nend−vertex−use ← 0
6 for all edge e ∈ star(v) do
7 Nincident−edges ← Nincident−edges + 1
8 if vstart(e) = v then . End-vertex-use©v e,start
9 Nend−vertex−use ← Nend−vertex−use + 1

10 if vend(e) = v then . End-vertex-use©v e,end
11 Nend−vertex−use ← Nend−vertex−use + 1

. Count the number of Steiner-vertex-uses.

12 NSteiner−vertex−use ← 0
13 for all face f ∈ star(v) do

14 for all Steiner cycle γ•i = [vi] ∈ ∂̂f do
15 if vi = v then . Steiner-vertex-use©v f,i
16 NSteiner−vertex−use ← NSteiner−vertex−use + 1

. Check if v could have been created via CutFaceAtVertex().

17 if NSteiner−vertex−use = 1 and Nend−vertex−use = 0 then
18 return true

. Check if v could have been created via CutClosedEdge(). This requires v to have a single incident

edge e = (v, v), and cycles using e must be of the form [(e, β)N].

19 if NSteiner−vertex−use = 0 and Nend−vertex−use = 2 and Nincident−edges = 1 then
20 e← only edge in star(v)
21 for all face f ∈ star(v) do

22 for all non-simple cycle γi ∈ ∂̂f do
23 if γi uses e and @(β,N) s.t. γi = [(e, β)N] then
24 return false
25 return true

. Check if v could have been created via CutOpenEdge(). This requires v to have exactly two incident
edges e1 and e2 each using v once, and cycles using v must not do any “switch-back” at v.

26 if NSteiner−vertex−use = 0 and Nend−vertex−use = 2 and Nincident−edges = 2 then
27 (e1, e2)← the two edges in star(v)
28 for all face f ∈ star(v) do

29 for all non-simple cycle γi ∈ ∂̂f do
30 for all j ∈ [1..N(γi)] do
31 if vj = v and ej(γi) = ej+1(γi) then
32 return false
33 return true

. All other cases mean that v could not have been created via a cut

34 return false

52

CanUnCutAtClosedEdge(e◦ ∈ E◦)

1 if star(e◦) = ∅ then
2 return false
3 else
4 Nincident−faces ← 0
5 Ncycles−using−e ← 0
6 Nclosed−edge−use ← 0
7 for all face f ∈ star(e◦) do
8 Nincident−faces ← Nincident−faces + 1

9 for all simple cycle γ◦i ∈ ∂̂f do
10 if e◦(γ◦i) = e◦ then . Closed-edge-uses©e◦ f,i,1 to©e◦ f,i,N(γ◦i)

11 Ncycles−using−e ← Ncycles−using−e + 1
12 Nclosed−edge−use ← Nclosed−edge−use +N(γ◦i)

13 if Nclosed−edge−use = 2 then
14 return true
15 else
16 return false

CanUnCutAtOpenEdge(e ∈ E|)

1 if star(e) = ∅ then
2 return false
3 else
4 Nincident−faces ← 0
5 Ncycles−using−e ← 0
6 Nopen−edge−use ← 0
7 for all face f ∈ star(e) do
8 Nincident−faces ← Nincident−faces + 1

9 for all non-simple cycle γi ∈ ∂̂f do
10 CycleAlreadyCounted ← false
11 for all j ∈ [1..N(γi)] do
12 if ej(γ) = e then . Open-edge-use©e f,i,j
13 Nopen−edge−use ← Nopen−edge−use + 1
14 if not CycleAlreadyCounted then
15 Ncycles−using−e ← Ncycles−using−e + 1
16 CycleAlreadyCounted ← true

17 if Nopen−edge−use = 2 then
18 return true
19 else
20 return false

UnCutAt(c ∈ C)

1 if c ∈ V then
2 UnCutAtVertex(c)
3 else if c ∈ E◦ then
4 UnCutAtClosedEdge(c)
5 else if c ∈ E| then
6 UnCutAtOpenEdge(c)
7 else if c ∈ F then
8 Do nothing

53

UnCutAtVertex(v ∈ V)

1 if NOT CanUnCutAtVertex(v) then
2 Do nothing
3 else

. Handle case where v could have been created via CutFaceAtVertex().

4 if NSteiner−vertex−use = 1 and Nend−vertex−use = 0 then
5 f ← only face in star(v)
6 i← index of Steiner cycle of f using v
7 RemoveCycleFromFace(f ,i)

. Handle case where v could have been created via CutClosedEdge().

8 if NSteiner−vertex−use = 0 and Nend−vertex−use = 2 and Nincident−edges = 1 then
9 e◦ ← CreateClosedEdge()

10 e← only edge in star(v)
11 for all face f ∈ star(v) do

12 for all non-simple cycle γi ∈ ∂̂f do
13 if γi uses e then
14 (β,N)← values such that γi = [(e, β)N]
15 γi(f)← [(e◦, β)N]

16 HardDelete(e)

. Handle case where v could have been created via CutOpenEdge().

17 if NSteiner−vertex−use = 0 and Nend−vertex−use = 2 and Nincident−edges = 2 then

. Compute h1 and h2, the two halfedges such that
h1−→ v• h2−→.

18 (e1, e2)← the two edges in star(v)
19 if vend(e1) = v then β1 ← > else β1 ← ⊥
20 if vstart(e2) = v then β2 ← > else β2 ← ⊥
21 h1 ← (e1, β1); h2 ← (e2, β2)

. Create the new open edge e = (vstart(h1), vend(h2)).
22 e← CreateOpenEdge(vstart(h1),vend(h2))

. Replace every occurrence of
h1−→ v• h2−→ by (e,>) and every occurrence of

h2←− v• h1←− by (e,⊥).
23 for all face f ∈ star(v) do

24 for all non-simple cycle γi ∈ ∂̂f do
25 γ′i ← []
26 for all j ∈ [1..N(γi)] do
27 if ej(γi) = e1 then
28 Do nothing.
29 else if ej(γi) = e2 then
30 if βj(γi) = β2 then
31 Append (e,>) to γ′i
32 else
33 Append (e,⊥) to γ′i
34 else
35 Append hj(γi) to γ′i
36 γi(f)← γ′i

. Delete e1 and e2.
37 HardDelete(e1)
38 HardDelete(e2)

. In any of the previous cases, delete v.

39 HardDelete(v)

54

UnCutAtClosedEdge(e◦ ∈ E◦)

1 if NOT CanUnCutAtClosedEdge(e◦) then
2 Do nothing
3 else
4 if Nincident−faces = 1 then . 1 face f ′: Case (a), (c), (d), (e), or (f) (cf. Figure 30)
5 f ′ ← face using e◦

6 if Ncycles−using−e = 1 then . 1 cycle γi = [(e◦, β)2]: Case (c) or (e)
7 i← index of cycle of f ′ using e◦

8 RemoveCycleFromFace(f ′,i)
9 if ε(f ′) =6� then . f ′ non-orientable: Case (e)

10 g(f ′)← g(f ′) + 1
11 else . f ′ orientable: Case (c)
12 ε(f ′)←6�
13 g(f ′)← 2g(f ′) + 1

14 else . 2 cycles γi1 = [(e◦, β1)] and γi2 = [(e◦, β2)]: Case (a), (d), or (f)
15 (i1, i2)← indices of cycles of f ′ using e◦

16 β1 ← β(γi1(f ′))
17 β2 ← β(γi2(f ′))
18 RemoveCyclesFromFace(f ′,{i1, i2})
19 if ε(f ′) =6� then . f ′ non-orientable: Case (f)
20 g(f ′)← g(f ′) + 2
21 else if β1 = β2 then . f ′ orientable, β1 = β2: Case (d)
22 ε(f ′)←6�
23 g(f ′)← 2g(f ′) + 2
24 else . f ′ orientable, β1 6= β2: Case (a)
25 g(f ′)← g(f ′) + 1

26 else . 2 faces f1 and f2, 2 cycles γi1 = [(e◦, β1)] and γi2 = [(e◦, β2)]: Case (b), (g), (h), or (i)
27 (f1, f2)← faces using e◦

28 i1 ← index of cycle of f1 using e◦

29 i2 ← index of cycle of f2 using e◦

30 β1 ← β(γi1(f1))
31 β2 ← β(γi2(f2))
32 if ε(f1) =6� and ε(f2) =6� then . ε1 = 6�, ε2 =6�: Case (i)
33 f ← CreateFace(6�, g(f1) + g(f2))
34 else if ε(f1) =6� and ε(f2) =� then . ε1 =6�, ε2 =�: Case (h)
35 f ← CreateFace(6�, g(f1) + 2g(f2))
36 else if ε(f1) =� and ε(f2) =6� then . ε1 =�, ε2 =6�: Case (g)
37 f ← CreateFace(6�, 2g(f1) + g(f2))
38 else . ε1 =�, ε2 =�: Case (b)
39 f ← CreateFace(�, g(f1) + g(f2))
40 if β1 = β2 then
41 for all i ∈ [1..k(f2)] do
42 FlipCycle(f2,i)

43 for all i ∈ [1..k(f1)], i 6= i1 do
44 AddCycleToFace(f ,γi(f1))

45 for all i ∈ [1..k(f2)], i 6= i2 do
46 AddCycleToFace(f ,γi(f2))

47 HardDelete(f1)
48 HardDelete(f2)

49 HardDelete(e◦)

55

UnCutAtOpenEdge(e ∈ E|)

1 if NOT CanUnCutAtOpenEdge(e) then
2 Do nothing
3 else
4 if Nincident−faces = 1 then . 1 face f ′: Case (j), (l), (m), (n), (o), or (s) (cf. Figure 31)
5 f ′ ← face using e
6 if Ncycles−using−e = 1 then . 1 cycle γi = [π1, (e, β1), π2, (e, β2)]: Case (l), (n), or (s)
7 i← index of the cycle of f ′ using e
8 γi ← γi(f

′)
9 (j1, j2)← indices of the two halfedges of γi using e

10 β1 ← βj1(γi)
11 β2 ← βj2(γi)
12 π1 ← SubPath(γi,j1,j2 − 1)
13 π2 ← SubPath(γi,j2,j1 − 1)
14 RemoveCycleFromFace(f ′,i)
15 if β1 = β2 then
16 AddCycleToFace(f ′,[π1, π2])
17 if ε(f ′) =6� then . β1 = β2, f ′ non-orientable: Case (n)
18 g(f ′)← g(f ′) + 1
19 else . β1 = β2, f ′ orientable: Case (l)
20 ε(f ′)←6�
21 g(f ′)← 2g(f ′) + 1

22 else . β1 6= β2: Case (s)
23 AddCycleToFace(f ′,[π1))
24 AddCycleToFace(f ′,[π2))

25 else . 2 cycles γi1 = [π1, (e, β1)] and γi2 = [π2, (e, β2)]: Case (j), (m), or (o)
26 (i1, i2)← indices of the cycles of f ′ using e
27 γi1 ← γi1(f ′)
28 γi2 ← γi2(f ′)
29 j1 ← index of the halfedge of γi1 using e
30 j2 ← index of the halfedge of γi2 using e
31 β1 ← βj1(γi1)
32 β2 ← βj2(γi2)
33 π1 ← SubPath(γi1 ,j1,j1 − 1)
34 π2 ← SubPath(γi2 ,j2,j2 − 1)
35 RemoveCyclesFromFace(f ′,{i1, i2})
36 if ε(f ′) =6� then . f ′ non-orientable: Case (o)
37 if β1 = β2 then
38 AddCycleToFace(f ′,[π1, π2])
39 else
40 AddCycleToFace(f ′,[π1, π2])

41 g(f ′)← g(f ′) + 2
42 else if β1 = β2 then . f ′ orientable, β1 = β2: Case (m)
43 AddCycleToFace(f ′,[π1, π2])
44 ε(f ′)←6�
45 g(f ′)← 2g(f ′) + 2
46 else . f ′ orientable, β1 6= β2: Case (j)
47 AddCycleToFace(f ′,[π1, π2])
48 g(f ′)← g(f ′) + 1

49 else . 2 faces f1 and f2, 2 cycles γi1 = [π1, (e, β1)] and γi2 = [π2, (e, β2)]: Case (k), (p), (k), or (r)
50 (f1, f2)← faces using e
51 i1 ← index of cycle of f1 using e
52 i2 ← index of cycle of f2 using e
53 γi1 ← γi1(f1)

56

54 γi2 ← γi2(f2)
55 j1 ← index of the halfedge of γi1 using e
56 j2 ← index of the halfedge of γi2 using e
57 β1 ← βj1(γi1)
58 β2 ← βj2(γi2)
59 π1 ← SubPath(γi1 ,j1,j1 − 1)
60 π2 ← SubPath(γi2 ,j2,j2 − 1)
61 if ε(f1) =6� and ε(f2) =6� then . ε1 = 6�, ε2 = 6�: Case (r)
62 f ← CreateFace(6�, g(f1) + g(f2))
63 else if ε(f1) =6� and ε(f2) =� then . ε1 = 6�, ε2 =�: Case (q)
64 f ← CreateFace(6�, g(f1) + 2g(f2))
65 else if ε(f1) =� and ε(f2) =6� then . ε1 =�, ε2 = 6�: Case (p)
66 f ← CreateFace(6�, 2g(f1) + g(f2))
67 else . ε1 =�, ε2 =�: Case (k)
68 f ← CreateFace(�, g(f1) + g(f2))
69 if β1 = β2 then
70 for all i ∈ [1..k(f2)] do
71 FlipCycle(f2,i)

72 for all i ∈ [1..k(f1)], i 6= i1 do
73 AddCycleToFace(f ,γi(f1))

74 for all i ∈ [1..k(f2)], i 6= i2 do
75 AddCycleToFace(f ,γi(f2))

76 if β1 = β2 then
77 AddCycleToFace(f ,[π1, π2])
78 else
79 AddCycleToFace(f ,[π1, π2])

80 HardDelete(f1)
81 HardDelete(f2)

82 HardDelete(e◦)

8 Vector graphics complex

In the previous sections, we have first introduced the notion of PCS complex : a cell decomposition of a topo-
logical space. Then, we have introduced the notion of abstract PCS complex : a combinatorial structure made
of abstract vertices, edges, halfedges, cycles, and faces. Each abstract PCS complex P is the combinatorial
description of a PCS complex that we call the geometric realization of P. Conversely, each PCS complex K
can be combinatorially described by an abstract PCS complex that we call the presentation scheme of K. This
duality made possible to infer what the topological operators on abstract PCS complexes should be (as opposed
to arbitrarily choose one that seems to make sense). In this section, we see that vector graphics complexes
(VGCs) can be defined in terms of abstract PCS complexes, and provide more theoretical insight about VGCs
using what has been learnt about PCS complexes.

8.1 Definitions

A vector graphics complex (VGC) is defined as an abstract PCS complex without the information of ori-

entability and genus. More formally, a VGC is a tuple P = (C,dim, ∂̂), where C, dim, and ∂̂ have the constraints
defined in Section 5.1. In a sense, a VGC can be seen as an abstract PCS complex where orientabilities and
genuses are “unknown” since in the context of a vector graphics program, we do not have access to such infor-
mation. Therefore, a given VGC face can potentially be considered to have any arbitrary genus or orientability.
This departs fundamentally from the concept of planar maps, which are assumed to be embeddable in the plane,
and consequently whose faces are necessarily orientable of genus zero.

57

Given a VGC, an immersion in R2 can be defined, as detailed in Section 4.2 of [Dalstein et al., 2014], by
augmenting the structure with a point pv ∈ R2 for each vertex, a map Γe : [0, 1]→ R2 for each open edge, and
a map Γe : S1 → R2 for each closed edge. This defines a pointset |c| ⊂ R2 for each cell c. However, we note
that this does not define a geometric realization, because the pointsets are allowed to overlap, or even not be
connected.

A geometric realization can be defined by assigning an orientability-genus pair to each face, which defines an
abstract PCS complex, which defines a unique geometric realization (cf. Section 5.3). Orientability-genus pairs
can be assigned either arbitrarily, or via heuristics based on a given immersion. For instance, the left column
of Figure 33 shows three different immersions of the same VGC: the first one “looks like” a disk (orientable
surface of genus 0), the second one “looks like” a Möbius strip (non-orientable surface of genus 1), and the
last one “looks like” an orientable surface of genus 1. Hence, a reasonable heuristic would respectively assign
the following orientabily-genus pairs: (�, 0), (6�, 1), and (�, 1). Since different orientability-genus pairs lead to
different geometric realizations, we see that the geometric realization is not invariant to planar deformations of
the immersion (i.e., deforming the edges of the VGC). In practice, this is never an issue since there is no need to
define/construct such a geometric realization. It is only useful for a theoretical understanding of the topological
spaces represented by vector graphics complexes, which is useful to design the topological operators.

8.2 Consequences of non-planarity

Planar maps [Baudelaire and Gangnet, 1989, Asente et al., 2007], extended to support closed edges and Steiner
cycles, can be seen as the subset of PCS complexes that can be embedded in the plane, i.e. that are planar, while
a VGC can potentially represent any PCS complex. This seemingly harmless difference has in fact tremendous
consequences. Indeed, a PCS complex that is planar has the following properties that general PCS complexes
do not have:

1. Every face is orientable of genus zero.

2. Every edge has exactly two face-uses (considering the exterior as an infinite face)

By analyzing the face-cut classification (cf. Figure 29), one can see that the first property implies that the
cut topological operator on planar maps is “not ambiguous”. More precisely, cutting a face f at a closed edge
is fully determined by which cycle to transfer to f1 and which cycle to transfer to f2 (Figure 30, Case (b)).
Similarly, cutting a face f at an open edge is fully determined by the two vertex-uses©v f,i,j and©v f,i′,j′ where
the cut occurs, and if i = i′ by which cycle to transfer to f1 and which cycle to transfer to f2 (Figure 31, Case
(k) if i = i′, Case (s) if i 6= i′). The case of cutting with an open edge when i = i′ is illustrated in Figure 33
(a), fully detailed in Figure 28.

However, this “non-ambiguity” is no longer true for VGCs. Since a VGC face may potentially be non-orientable
and/or of strictly positive genus, any of the cases illustrated Figure 30 and 31 may apply, whereas only the
cases (b), (k), and (s) apply to planar maps. In other words, heuristics based on the 2D geometry of edges
have to be designed to decide which one of the many non-equivalent cut algorithms should be used. For
instance, as illustrated Figure 33, using the “planar-map cut” may not capture the user’s intent. In these cases,
other algorithms should be used, which correspond to interpreting the face as non-orientable (Figure 33(c)), or
orientable but with a strictly positive genus (Figure 33(e)). Finding good heuristics is still an open problem,
but the PCS formalism introduced in this report has made possible to identify the exhaustive list of possible
algorithms to choose from.

The second property has consequences on how planar maps are implemented: halfedges are “true halfedges”
in the sense of the halfedge data structure. They are typically implemented with a reference semantics (i.e.,
as pointers), they go by pair and refer to their “opposite halfedge” and “next halfedge”. However, since edges
of VGCs may be used three times or more, the term “halfedge” is actually an abuse of language, merely a
more convenient, shorter name for “oriented edge”. Vertices, edges and faces are the objects with a reference
semantics, but halfedges have a value semantics. A structure similar to the radial-edge structure could be used
instead, in which case a reference semantics for halfedges could be used (i.e., edge-uses are actual objects with
an identity), but it is not necessary and is not the choice that we personally made.

58

v1

v2

e1

e2

f

v1

v2

e1

e2

f1 f2
ecut

Cut (k)

Edit geometry

v1

v2

e1 e2

f

Cut (k)

v1

v2

e1 e2

f1 f2

ecut

v1

v2

e1

e2

f1 f2e

v′1

v′2

e′

Global
Unglue

v1

v2

e1 e2

f1 f2

v′1

v′2

e e′
Global
Unglue

Cut (l)

Global
Unglue

v1

v2

e1 e2

f ecut

v1

v2

e1 e2

f

v′1

v′2

e e′

v1
v2

e1

e2

f
Cut (k)

Cut (j)

Edit geometry

Global
Unglue

Global
Unglue

(a)

(b)

(c)

(d)

(e)

f1

f2

f
f

f1

f2

v1

e1

e2

v2

ecut

v1

e1

e2

v2

ecut

v1

e1

e2

v2 e

v′1v′2 e′

v1v2 e
v′1v′2 e′

e1

e2

Figure 33: Left column: Three different immersions of the same VGC. Middle column: the result of applying
a given cut algorithm to the VGC (the letters (k), (l) and (j) refer to Figure 31). Right column: the result
of applying unglue to all cells and modifying slightly the geometry, for better visualization of the cut. This
illustrates that unlike planar maps, cutting a VGC is an ambiguous operation. While there is only one way a
planar map face can be cut (i.e., applying Cut (k), cf. row (a)), there are many non-equivalent ways a VGC
face can be cut. Choosing the ”planar map way” may lead to unexpected results (cf. rows (b) and (d)), in
which case choosing an alternative cut algorithm may better capture the user’s intent (cf. rows (c) and (e)).

59

8.3 Towards an immersion-independent geometric realization

We have seen that by assigning orientability-genus pairs to faces, it is possible to define a geometric realization
of a VGC as the geometric realization of an abstract PCS complex. However, this geometric realization depends
on the pairs chosen, which can be interpreted as depending on a given immersion of the VGC. From this
observation, an interesting question is: is it possible to define a geometric realization directly for the VGC,
i.e. without assigning orientability-genus pairs and interpreting the VGC as an abstract PCS complex? If the
answer was “yes”, then the whole concept of PCS complex would seem unnecessary to study the VGC. In this
section, we show that the short answer is “no” (cf. next paragraph), or at the very least “yes, but...” (last
paragraph).

In this section, let us try to define a geometric realization directly for the VGC, and see what is the issue
that arises. It is fair to assume that the geometric realization of a face must be homeomorphic to a compact
2-manifold (or its interior, but we omit this detail for clarity). This is the widely accepted definition to capture
the intuitive notion of “surface”. Therefore, we know that it must be homeomorphic to Fε,g,k for some ε, g,
and k, where k should obviously be the number of cycles of the face. There comes the issue: if we want the
geometric realization to define a unique topological space up to homeomorphism, then since the pair (ε, g) is
not part of the combinatorial information, we have to abritrarily to decide on a value (ε0, g0), and use this same
value for all faces, for all VGCs. For instance, planar maps make the choice of ε0 =� and g0 = 0. In our case,
we know that this choice is not suitable, since it would imply that only the “planar maps cuts” are available,
and we know that other kinds of cuts are also useful. Allowing such cuts implies g0 > 0. However, we have also
seen that applying these cuts decreases the genus of the face, which contradicts the statement that all faces
of all VGCs must have the same genus g0. Therefore, defining a geometric realization directly for the VGC is
impossible, unless we weaken our initial assumption that the geometric realization of a face is homeomorphic
to a compact 2-manifold.

A more intuitive way to understand this contradiction is the following. Consider a VGC made of a single face
with a single cycle (e.g., Figure 33, top-left). It “looks like” a disk, i.e. an orientable surface of genus zero.
However, by deforming the edges bounding the face, you can make it “look like” a Möbius strip, thus cuts
specific to Möbius strips must also be available. After such a cut, the face looks orientable again. But by
deforming this face again, you can still make it look non-orientable again (the whole VGC would look like a
“double Möbius strip with one cut”). By iterating this process, we see that VGC faces must be allowed to be
cut an arbitrary number of time with a genus-decreasing cut. However, no compact 2-manifold can be cut an
arbitrarily large number of times this way, since their genus is finite. Thus, the only way to define a unique
geometric realization for VGCs is to use non-compact 2-manifold to realize faces.

Fortunately, the reasoning above leads us towards an appropriate non-compact 2-manifold: a non-orientable
surface of infinite genus. More specifically, let us define F6�,∞,k as the connected sum of a (countably) infinite
number of projective planes, with k holes. Such a space does exist and can be formally defined, but it is not
compact. It can be informally visualized by replacing g by ∞ in Figure 3, bottom-right. Using this exotic
topological space, it is actually possible to define a geometric realization directly for the VGC. The geometric
realization of a vertex is a point, the geometric realization of an open edge is the interior of a segment, the
geometric realization of a closed edge is a circle, and the geometric realization of a face is the interior of F6�,∞,k.
Hence, a most accurate answer to our initial question is actually: yes, a geometric realization can be defined
directly for VGCs, but we must waive the assumption that faces are homeomorphic to compact 2-manifolds,
and this is no less complex that studying the PCS complex as an intermediate concept.

8.4 Conclusion

A VGC can be seen as an abstract PCS complex without the orientability and genus information. Conversely,
an abstract PCS complex can be defined from a VGC by assigning an orientability-genus pair to each face, which
makes possible to define a geometric realization of the VGC. However, this geometric realization is not unique:
choosing different orientability-genus pairs lead to different (and non-homeomorphic) geometric realizations.
Unless we are willing to consider exotic non-compact topological spaces (e.g., infinite connected sum of projective
planes), it is impossible to define a geometric realization directly for the VGC, which theoretically justifies the
relevance of the PCS complex for the study of the VGC.

60

star

c

Sc S−c S−c ∪ {c} C �c C′

reduced
star extension

simplification
at c

Figure 34: Reduced star and atomic simplification.

Since VGC faces can be interpreted as non-orientable and/or with strictly positive genus, then we have learnt
from the study of the PCS complex that cutting a face is an ambiguous operation (unlike with planar maps).
This means that for any given VGC face and any given immersion, there are several non-equivalent ways the
face can be cut. They are all perfectly valid operations, but one of them may better capture the user’s intent,
and choosing which one it is requires heuristics based on the immersion.

To conclude, the VGC has proven to be one of these mathematical objects that appear very simple on the
surface, but that hide a complexity deeper than one might expect. The intermediate concept of PCS complex
is necessary to comprehend this complexity.

9 Simplification and equivalence of cell complexes

The goal of this last section is to formally define what minimal decomposition means, to be able to formulate
our main conjecture stating that if we are given a PCS complex K = (X, C), then X has a unique minimal PCS
decomposition Km = (X, Cm).

We first define the notion of atomic simplification, which is transforming a cell complex into another by merging a
cell and its reduced star into a single cell. This operation is equivalent to the uncut topological operator presented
in the previous section. If a cell complex can be transformed into another cell complex via a finite sequence of
atomic simplifications or/and de-simplifications, we say that they are equivalent. If a cell complex cannot be
simplified, it is called minimal, or simple. We show that every cell complex admits a minimal equivalent cell
complex, and in the specific case of the dimension two or less (i.e., the case of PCS complex), we conjecture
that this minimal equivalent complex is unique. A potential proof is to triangulate the PCS complex, and show
that any sequence of simplification leads to the unique decomposition discussed in [De Floriani et al., 2003].

9.1 Simplification of cell complexes

In this section, we define the concept of simplification, intuitively an operation transforming a cell complex
K = (X, C) into another complex K′ = (X, C′), decomposing the same space with strictly fewer cells.

Reduced star Let K = (X, C) be a cell complex and c ∈ C. The reduced star of c is defined by:

S−c =

{
∅ if Sc = ∅
{c′ ∈ Sc | dim c′ = n−c } otherwise, where n−c = minc′∈Sc(dim c′)

(73)

In other words, the reduced star is the star reduced to its cells of lowest dimension, as illustrated in Figure 34.
Note that n−c is not necessarily equal to dim(c) + 1, for instance if you consider the cell complex decomposing
S2 as a vertex v ∈ S2 and the face S2\v, then we have S−v = {f}.

61

Extension The extension of a cell c is defined as its reduced star extended by c itself:

Ŝ−c = {c} ∪ S−c (74)

ĉ = < Ŝ−c > = < c,S−c > (75)

Atomic simplification Let K = (X, C) be a cell complex and c ∈ C. We say that K can be simplified at c,
and we write K �c, if and only if the following constraints are satisfied:

• Sc 6= ∅

• K′ = (X, C′) is a cell complex, where C′ = (C\Ŝ−c) ∪ {ĉ}

In this case, we write K �c K′. For the dimension two or less, checking whether “K can be simplified at c” can be
done combinatorially with the algorithm CanUnCut(c). If yes, then K′ is obtained by the algorithm UnCut(c).

Anonymous atomic simplification Let K = (X, C) and K′ = (X ′, C′) be two cell complexes. We define the
binary relation:

K �• K′ ⇔ ∃c ∈ C, K �c K′ (76)

It follows directly that if (X, C) �• (X ′, C′) then X ′ = X. Therefore, as an abuse of notation, we will often
write C �• C′ instead of K �• K′, but it must be clear that �• and the related binary relations are defined on cell
complexes and not cell decompositions, since their definition requires the existence of Bc.

Proposition 8. If C �• C′, then |C| > |C′|, where |C| denotes the number of cells in C.

Proof. If C �• C′, then ∃c ∈ C, C �c C′ and we have C′ = (C\Ŝ−c) ∪ {ĉ}, thus |C′| = |C| − |Ŝ−c | + 1. Since C can

be simplified at c, this means Sc 6= ∅, thus S−c 6= ∅, thus Ŝ−c contains at least two cells: c and one belonging

to S−c . Thus |Ŝ−c | ≥ 2, thus |C′| ≤ |C| − 2 + 1, thus |C′| ≤ |C| − 1.

Simplification We define the binary relation � to be the transitive closure of �• (i.e., the minimal transitive
relation containing �•).

Proposition 9. C � C′ if and only if a finite sequence of atomic simplification transforms C into C′. Formally:

C0 � C′ ⇔

∃k ∈ N+,
∃C1, . . . , Ck−1 decomposing X,
∀i ∈ [0..k − 1], ∃ci ∈ Ci,
C0 �c0 C1 �c1 · · · �ck−2 Ck−1 �ck−1 C′

(77)

Proof. An equivalent definition of the transitive closure is:

• (�•)1 = (�•)

• ∀k ∈ N+, (�•)k+1 = (�•) ◦ (�•)k

• (�) = (�•)+ =
⋃
k∈N+(�•)k

Thus if C � C′, there exists k ∈ N+ such that C(�•)kC′, thus there exist C1 . . . , Ck−1 such that

C0 �• C1 �• · · · �• Ck−1 �• C′. (78)

From the definition of �• it comes (with Ck = C′):

∀i ∈ [0..k − 1],∃ci ∈ Ci, Ci �ci Ci+1 (79)

that can be rewritten in
C0 �c0 C1 �c1 · · · �ck−2 Ck−1 �ck−1 C′. (80)

The converse implication directly comes from the fact that � is transitive and contains �•.

Proposition 10. If C � C′, then |C| > |C′|.

62

Proof. If C � C′, then C �c0 C1 �c1 · · · �ck−2 Ck−1 �ck−1 C′, then |C| > |C1| > · · · > |Ck−1| > |C′|, then |C| > |C′|.

Proposition 11. � is a strict partial order.

Proof. We verify below that it is irreflexive, transitive and asymmetric:

• Irreflexivity: we have ¬(|C| > |C|), thus ¬(C � C).

• Transitivity: by definition.

• Asymmetry: If C � C′ then (|C| > |C′|) then ¬(|C′| > |C|) then ¬(C′ � C).

Minimal complex Let Ω be a set of cell complexes. A cell complex K ∈ Ω is said to be a minimal element
of Ω if it is minimal for �, i.e. if there are no K′ ∈ Ω such that K � K′. In other words, a cell complex is said
to be minimal if it cannot be simplified to another cell complex in Ω. Formally:

K minimal in Ω ⇔ ∀K′ ∈ Ω, ¬(K � K′) (81)

By extension, if no set Ω is specified, K is said to be minimal, or simple, if it cannot be simplified:

K = (X, C) minimal ⇔ ∀c ∈ C, ¬(K �c) (82)

Proposition 12. � is a well-founded strict partial order, i.e. every non-empty set of cell complexes Ω has a
minimal element.

Proof. Let nm = min{|C| | C ∈ Ω} (exists because < on N is well-founded), and Cm such as |Cm| = nm. By
definition of nm, we have ¬(|C′| < |Cm|) for each C′ in Ω, thus ¬(Cm � C′), thus Cm is a minimal element of
Ω.

Corollary 2. There are no infinite descending chains:

C0 � C1 � · · · � Ck � · · · (83)

Proof. Well-founded strict partial orders do not have infinite descending chains.

Corollary 3. Let X be a topological space admitting a cell complex K. Then there exists Km decomposing X
such that Km is minimal.

Proof. Let Ω be the set of all cell complexes decomposing X. It is non-empty since K ∈ Ω, thus there exists
Km minimal using Proposition 12.

Finally, we conclude this section by defining the weak versions of the simplification binary operators.

Weak atomic simplification Let K = (X, C) be a cell complex and c ∈ C. We conveniently write K <c K′ to
define K′ as being equal to:

• K if K cannot be simplified at c.

• the atomic simplification of K at c otherwise.

Weak anonymous atomic simplification We define the relation <• to be the reflexive closure of �•:

K <• K′ ⇔
{
K = K′, or
K �• K′ (84)

Weak simplification We define the relation < to be the reflexive closure of �:

K < K′ ⇔
{
K = K′, or
K � K′ (85)

63

9.2 Equivalence between cell complexes

Bi-directional atomic simplification We define the relation
•↔ to be the symmetric closure of �•:

K •↔ K′ ⇔
{
K �• K′, or
K′ �• K (86)

Bi-directional simplification We define the relation ↔ to be the transitive closure of
•↔.

Proposition 13. K ↔ K′ iff a finite sequence of atomic simplification or de-simplification transforms K into
K′:

K ↔ K′ ⇔ K •↔ K1
•↔ · · · •↔ Kk−1

•↔ K′ (87)

Proof. Same as Proposition 9.

Equivalence relation We define the relation ≡ to be the reflexive closure of ↔:

K ≡ K′ ⇔
{
K = K′, or
K ↔ K′ (88)

It is an equivalence relation, since it is symmetric, transitive and reflexive. Note that it is important to take
the transitive closure after the symmetric closure: two decompositions C and C′ can have the same number of
cells (and thus we have neither C � C′ nor C′ � C), but still could be obtained via a de-simplification followed
by a simplification: C ≺ C′′ � C′. In fact, we will see later that it is always possible.

Corollary 4. Two cell complexes are equivalent if and only if they are equal or obtained from one another via
a finite sequence of atomic simplification or de-simplification:

K ≡ K′ ⇔
{
K = K′, or

K •↔ K1
•↔ · · · •↔ Kk−1

•↔ K′ (89)

Proof. Combine Proposition 13 and definition of ≡.

Proposition 14. Let K = (X, C) and K′ = (X ′, C′) be two cell complexes. Then we have:

K ≡ K′ ⇒ X = X ′ (90)

Proof. We have K �c K′ ⇒ X = X ′ directly from the definition of �c, which implies that X = X ′ whenever K
and K′ are related by any of a closures of �c defined above.

Proposition 15. Let K and K′ be two cell complexes. Then we have:

K < K′ ⇒ K ≡ K′ (91)

Proof. K < K′ ⇒ (K = K′ or K � K′). In the first case, K ≡ K′ since ≡ is reflexive. In the second case, we

have K �• · · · �• K′, hence K •↔ · · · •↔ K′, hence K ≡ K′.

Conjecture 1. Let X be a topological space, and K = (X, C) and K′ = (X, C′) be two cell complexes decomposing
X. Then they admit a common “ancestor”, i.e.:

∃K′′ = (X, C′′) such that

{
K′′ < K, and
K′′ < K′ (92)

We expect that a proof can be achieved by explicitely constructing C′′ as intersections of cells in C with cells in
C′. Then, we would have to prove that K′′ = (X, C′′) is a cell complex. The following of this Section 9.2 (but
no other sections) assumes that this conjecture is true.

Theorem 2 (Equivalence Theorem). Let K = (X, C) and K′ = (X ′, C′) be two cell complexes. Then we have:

K ≡ K′ ⇔ X = X ′ (93)

In other words: the equivalent cell complexes are exactly those decomposing the same space.

64

Proof. We have already K ≡ K′ ⇒ X = X ′. Let X be a topological space and K = (X, C) and K′ = (X, C′) be
two cell complexes decomposing X. Let K′′ = CommonAncestor(K,K′). We have K′′ < K and K′′ < K′, thus
K′′ ≡ K and K′′ ≡ K′, thus K ≡ K′ by transitivity.

Corollary 5. Let X be a topological space, and K = (X, C) and K′ = (X, C′) be two cell complexes decomposing
X. Then it is possible to transform K into K′ via a finite sequence of atomic simplification or de-simplification.

Proof. We simply combine the result of the equivalence theorem with Corollary 4.

9.3 Uniqueness of minimal PCS complex

We have seen, for arbitrary dimension, that if X admits a cell complex K = (X, C), then it also admits one Km
that is minimal. In fact, regardless whether Conjecture 1 is true or false, it also admits one which is both minimal
and equivalent to K (i.e., that can be obtained from a finite sequence of simplification or de-simplification):

Proposition 16 (Minimal decomposition). Let K = (X, C) be a cell complex. Then there exists a minimal cell
complex Km such that K ≡ Km.

Proof. We have seen that there exists no infinite decreasing sequences of cell complexes. Hence, by defining
K0 = K, we can recursively define Ki+1 by Ki �ci Ki+1 while there exists a cell ci ∈ Ci such that Ki can be
atomically simplified at ci. This procedure necessarily stops, and then there exists N ∈ N such that KN cannot
be atomically simplified at any cell and K0 �c0 · · · �cN−1 KN . Thus, KN minimal and K < KN , thus KN minimal
and K ≡ KN .

In the case of the dimension two or less, we conjecture that this minimal decomposition is unique, which would
imply that performing simplifications in any order until it is not possible anymore leads necessarily to this
unique minimal decomposition.

Conjecture 2 (Unique minimal decomposition). Let X be a topological space, and K = (X, C) and K′ = (X, C′)
be two minimal PCS complexes decomposing X. Then K = K′.

10 Conclusion

Using a formalism borrowing concepts from algebraic topology and graph theory, we have introduced PCS
complexes, and their combinatorial counterpart abstract PCS complexes. Thanks to this formal framework, we
were able to carefully analyze the underlying pointset topology that vector graphics complexes represent.

Because VGC faces can be interpreted as non-orientable surfaces, or surfaces with strictly positive genus, a
wide spectrum of non-equivalent cut algorithms may be applied (cf. Figure 30 and 31). This brings VGCs to
a significantly richer category of topological spaces than planar maps, whose assumption of planarity implies
strong properties which do not hold true for VGCs. For instance, one cannot assume that cutting a face with
an edge starting and ending at the same cycle disconnects the face (cf. Figure 33). Which algorithm should
be applied in a given situation is an ill-defined problem, since we do not have access to the actual non-planar
topological space but only to a non-injective 2D projection of this space. Therefore, one has to design heuristics
based on the geometry of edges to take a decision. However, no “perfect heuristic” exists, since there may not
even be consensus among humans on which algorithm is preferable, due to the interpretative nature of the 2D
depiction [Durand, 2002].

With this report, we hope to convince the reader that despite the apparent simplicity of 2D vector graphics,
allowing both shared edges and self-intersections is not an easy task, which leads to complex and not well-studied
topological objects. This might explain why despite several decades of research in the field, no data-structure
existed combining the convenience of topological manipulation and self-intersections. The vector graphics
complex is a first attempt, and we foresee that it will lead to various interesting future research, with a wide
range of applications. More particularly, a very important but still open problem is how to render correctly
self-overlapping faces (e.g., [Wiley and Williams, 2006]), and how to render correctly junctions between incident
edges and faces.

65

Figure 35: The figure on the left has been achieved using 9 independent Bézier curves, depicted on the right
from back to front. Editing such a figure is extremely time-consuming.

To conclude this report with a fun fact, we note that most of the figures in it have been created using the latest
version of Inkscape, chosen for its nice LATEX export, and powerful yet user-friendly interface overall. However,
Inkscape obviously does not support the VGC (yet!), while most figures that we had to create are typically the
kind that would be much easier to create with the VGC. Therefore, a lot of tricks were needed to achieve them,
typically decomposing a single “PCS face” into many independent pieces (cf. Figure 35). The slightest edit
was very time-consuming since all pieces should be modified for their geometry to coincide, which was on the
one hand very frustrating, but on the other hand a very convincing proof by experience of the relevance of the
VGC, that we could not resist to share.

References

[Asente et al., 2007] Asente, P., Schuster, M., and Pettit, T. (2007). Dynamic planar map illustration. ACM
Trans. Graph., 26(3):30:1–30:10.

[Baudelaire and Gangnet, 1989] Baudelaire, P. and Gangnet, M. (1989). Planar maps: An interaction paradigm
for graphic design. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI
’89, pages 313–318, New York, NY, USA. ACM.

[Dalstein et al., 2014] Dalstein, B., Ronfard, R., and van de Panne, M. (2014). Vector graphics complexes.
ACM Trans. Graph., 33(4).

[De Floriani et al., 2003] De Floriani, L., Morando, F., and Puppo, E. (2003). Representation of Non-manifold
Objects Through Decomposition into Nearly Manifold Parts. In Proceedings of the Eighth ACM Symposium
on Solid Modeling and Applications, SM ’03, pages 304–309, New York, NY, USA. ACM.

[Dehn and Heegaard, 1907] Dehn, M. and Heegaard, P. (1907). Analysis situs. In Enzyklopädie der Math. Wiss.
III.1.1, pages 153–220.

[Durand, 2002] Durand, F. (2002). An invitation to discuss computer depiction. In Proceedings of the 2nd
International Symposium on Non-photorealistic Animation and Rendering, NPAR ’02, pages 111–124, New
York, NY, USA. ACM.

[Edelsbrunner and Harer, 2010] Edelsbrunner, H. and Harer, J. (2010). Computational Topology: An Introduc-
tion. Applied mathematics. American Mathematical Society.

[Gale, 1987] Gale, D. (1987). The Classification of 1-Manifolds: A Take-Home Exam. The American Mathe-
matical Monthly, 94(2):170–175.

[Hatcher, 2001] Hatcher, A. (2001). Algebraic Topology.

[Lee, 2011] Lee, J. M. (2011). Introduction to Topological Manifolds. Springer New York.

[Rossignac and O’Connor, 1989] Rossignac, J. and O’Connor, M. (1989). SGC: A Dimension-independent
Model for Pointsets with Internal Structures and Incomplete Boundaries. Research report. IBM T.J. Watson
Research Center.

[Weiler, 1985] Weiler, K. (1985). Edge-Based Data Structures for Solid Modeling in Curved-Surface Environ-
ments. IEEE Computer Graphics and Applications, 5(1):21–40.

[Wiley and Williams, 2006] Wiley, K. and Williams, L. R. (2006). Representation of interwoven surfaces in 2
1/2 D drawing. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI
’06, pages 65–74, New York, NY, USA. ACM.

66

	Introduction
	Prerequisites of algebraic topology
	Topological spaces and homeomorphisms
	Manifolds with boundary and compact manifolds
	Classification of compact n-manifolds for n 2
	Non-manifold topological spaces
	Geometric realizations and quotient spaces
	Immersions vs. embeddings

	Motivations and overview
	PCS complex
	Cell complex
	Relation between c and Bc, compactness, and subcomplexes
	Comparison with CW complexes
	PCS complex
	Equivalence between PCS-decomposable spaces and 2-triangulable spaces

	Abstract PCS complex
	Definition
	Convenient notations
	Geometric realization
	Presentation scheme

	Algebraic operations on halfedges, paths and cycles
	Paths
	Flipping halfedges, paths and cycles
	Converting open halfedges to paths and paths to cycles
	Concatenating paths
	Rotating non-simple cycles
	Extracting subpaths from paths and non-simple cycles

	Topological operators on abstract PCS complexes
	Cell creation
	Cell deletion
	Glue
	UnGlue
	Cut
	Cutting an open edge (at a vertex)
	Cutting a closed edge (at a vertex)
	Cutting a face at a vertex
	Cutting a face at an edge
	Cutting an orientable face at a closed edge
	Cutting a non-orientable face at a closed edge
	Cutting a face at an open edge starting and ending at the same hole
	Cutting a face at an open edge starting and ending at different holes
	Flipping cycles of non-orientable faces

	Uncut

	Vector graphics complex
	Definitions
	Consequences of non-planarity
	Towards an immersion-independent geometric realization
	Conclusion

	Simplification and equivalence of cell complexes
	Simplification of cell complexes
	Equivalence between cell complexes
	Uniqueness of minimal PCS complex

	Conclusion

